Secretaría de Gobernación
CONACYT
INGER
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.inger.gob.mx/jspui/handle/20.500.12100/17104
Título : Modulation of PPAR-γ by nutraceutics as complementary treatment for obesity-related disorders and inflammatory diseases
Autor: DANIEL ORTUÑO SAHAGUN
ANA LAURA MARQUEZ AGUIRRE
MARIA SARAY QUINTERO FABIAN
ROCIO IVETTE LOPEZ ROA
ARGELIA ESPERANZA ROJAS MAYORQUIN
Palabras clave : MEDICINA Y CIENCIAS DE LA SALUD;Ciencias médicas;Ciencias de la nutrición;Enfermedades nutricionales y metabólicas;Nutritional and metabolic diseases;Nutrition disorders (pathology);Desordenes nutricionales (patología)
Fecha de publicación: 23-oct-2012
Editorial : Hindawi
Descripción : Abstract: A direct correlation between adequate nutrition and health is a universally accepted truth. The Western lifestyle, with a high intake of simple sugars, saturated fat, and physical inactivity, promotes pathologic conditions. The main adverse consequences range from cardiovascular disease, type 2 diabetes, and metabolic syndrome to several cancers. Dietary components influence tissue homeostasis in multiple ways and many different functional foods have been associated with various health benefits when consumed. Natural products are an important and promising source for drug discovery. Many anti-inflammatory natural products activate peroxisome proliferator-activated receptors (PPAR); therefore, compounds that activate or modulate PPAR-gamma (PPAR-γ) may help to fight all of these pathological conditions. Consequently, the discovery and optimization of novel PPAR-γ agonists and modulators that would display reduced side effects is of great interest. In this paper, we present some of the main naturally derived products studied that exert an influence on metabolism through the activation or modulation of PPAR-γ, and we also present PPAR-γ-related diseases that can be complementarily treated with nutraceutics from functional foods.
Concluding remarks: Despite the great potential benefits that nutraceutics are able to provide, one must be careful when consuming botanical and dietary supplements with anti-inflammatory and antioxidant properties when one is at risk for microbial infections. In vivo, the outcome of an infection is determined by a balance between means of host-immune defense versus those of the parasite, and antioxidants and anti-inflammatories may weaken immune defense and exacerbate the infection. Furthermore, the high prevalence of dietary supplements does not ensure that the nutrient intake of supplements would be the same among all of their consumers. The nutrient intake from dietary supplements varies in terms of the composition of the supplements. Therefore, it is urgent to meet nutrient needs by consuming foods that provide a well-balanced, nutrient-dense diet. It is also important to engage in different types of evidence in support of the health benefits of natural products. Epidemiological information may offer the first suggestion that certain natural products, in the diets of specific populations, may exert an influence on the course of chronic diseases, such as obesity and some of its concomitant complications, such as cardiovascular diseases, diabetes, and cancer. Although the intake of certain dietary compounds indicate differences in the prevalence of some pathologies in specific groups, it does not prove that supplementation with these compounds could change the course of the pathologies. Genetic and environmental factors may all contribute to the final effects observed in a studied population. In this paper, we carried out a detailed approach on the mechanistic and molecular interaction of nutraceutics and PPAR-γ, which has been identified as one of the major regulators of adipogenesis at a cellular level and a master regulator of energetic homeostasis. Because the use of synthetic PPAR-γ agonists has been associated with an increased risk of cardiovascular ischemic events, natural PPAR-γ ligands have been shown to ameliorate obesity-related disorders and certain inflammatory diseases. Some of these agonists could activate both PPAR-α and PPAR-γ (dual PPAR-α/PPAR-γ agonists), which might be even more effective. However, additional, extensive research of nutraceutics and their potential ability to modulate PPAR-γ in strengthening the inflammatory response network requires further study in the future. Unfortunately, there continue to be few clinical trials on these compounds and some evidences lack the molecular mechanisms. The group of evidences indicates that the effect of molecular interactions will also depend on the model studied in the laboratory. In vivo and in vitro assays have documented the biological effects on adipogenesis, inflammation, carcinogenesis, and so forth. However, additional studies should be conducted in PPAR-γ conditional mice in which the effects of nutraceutics on adipose tissues the hyperplasia and hypertrophy, adipogenetic genes modulation, and inflammatory biomarkers can be directly observed and studied. In conclusion, although more experimental work is required to evaluate their full potential in humans, especially in terms of safety, PPAR natural agonists nonetheless represent a promising strategy for mitigating obesity-related disorders and some inflammatory diseases, reducing the side effects exhibited by the commonly used pharmacological drugs. However, more randomized controlled trials are needed for nutraceutics that, in agreement with epidemiological and mechanistic evidence assays, could be good candidates for or against a specific pathology. Additionally, surprising results of increased disease risk with the consumption of some natural products have been found. Therefore, unless safety profiles for nutraceutical supplements in humans are available, caution should be used in their long-term use as PPAR-γ modulators.
URI : http://repositorio.inger.gob.mx/jspui/handle/20.500.12100/17104
Aparece en las colecciones: 1. Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
318613.pdf1.32 MBAdobe PDFVisualizar/Abrir