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ABSTRACT

Background: Frailty remains a challenge in the aging research area with a number of gaps in knowledge still to
be filled. Frailty seems to behave as a network, and in silico evidence is available on this matter. Having in vivo
evidence that frailty behaves as a complex network was the main purpose of our study.

Methods: Data from the Mexican Health and Aging Study (main data 2012, mortality 2015) was used. Frailty was
operationalized with a 35-deficit frailty index (FI). Analyzed nodes were the deficits plus death. The edges,
linking those nodes were obtained through structural learning, and an undirected graph associated with a dis-
crete probabilistic graphical model (Markov network) was derived. Two algorithms, hill-climbing (hc) and Peter
and Clark (PC), were used to derive the graph structure. Analyses were performed for the whole population and
tertiles of the total FI score.

Results: From the total sample of 10,983 adults aged 50 or older, 43.8% were women, and the mean age was
64.6 years (SD = 9.3). The number of connections increased according to the tertile level of the FI score. As the
FI score raised, groups of interconnected deficits increased and how the nodes are connected changed.
Conclusions: Frailty phenomenon can be modeled using a Bayesian network. Using the full sample, the most
central nodes were self-report of health (most connected node) and difficulty walking a block, and all deficits
related to mobility were very interconnected. When frailty levels are considered, the most connected nodes
differ, but are related with vitality, mainly at lower frailty levels. We derived that not all deficits are equally
related since clusters of very related deficits and non-connected deficits were obtained, which might be con-
sidered in the construction of the FI score. Further research should aim to identify the nature of all observed
interactions, which might allow the development of specific interventions to mitigate the consequences of frailty
in older adults.

1. Introduction

him/her to function in a determined context, a process of decline starts,
leading to gradual deterioration and eventually to death (Hoffmann,

The aging process is characterized by its variability, leading to
various changes in structure and function at different levels of organi-
zation, from molecules, cells, and tissues, to physiological systems and
environmental interactions (Kriete et al., 2006). Individuals accumulate
deficits and increase their vulnerability to stressors at different speeds
throughout life, eventually becoming functionally impaired and de-
pendent (Mitnitski et al., 2017a). This not only poses a burden to the
individual and their family, but also represents a challenge for public
health systems and society.

Once a peak in development is reached by an individual that allows

2016). An example of the previous statement is what happens with
bone density and height, a well-studied phenomenon in aging. Height
reaches its peak around the age of twenty and starts to decrease at the
age of thirty (Sorkin et al., 1999); sometimes because of osteoporotic
fractures, with a wide variation between individuals. Similarly, people
of the same age have different health patterns. The theory of biological
aging (BA), implies that the presence of complex multi-causal processes
determines interactions at different complexity levels, eventually
leading to adverse outcomes (Bjorksten and Tenhu, 1990; Mitnitski
et al., 2017a).
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On the other hand, frailty is recognized as the clinical representa-
tion of damage accumulation (Morley et al., 2013; Rodriguez-Manas
et al., 2013). One of the dominant approaches to its operational defi-
nition is the frailty index (FI); which has been proposed (Rockwood
et al., 2000; Searle et al., 2008) as a system-level measurement to un-
derstand and evaluate the heterogeneous nature of the aging process
(i.e., empirical evaluation of BA). The so-called deficits are derived
from clinical, biological, or social dimensions that operate as a network
system and feature complex interactions (Rutenberg et al., 2017) in an
individual. Moreover, the FI has been tested in different contexts: as a
health assessment tool with clinical data (Rockwood et al., 2011), in
laboratory tests (Howlett et al., 2014), and even in animal models
(Whitehead et al., 2014). Notwithstanding, it has also been proven
useful to characterize socioeconomic inequalities in health within
countries (Hajizadeh et al., 2016) and to predict adverse health out-
comes (e.g., falls, institutionalization, disability, mortality, etc.). Ac-
cording to Rockwood and Mitnitski (2007), Searle et al. (2008), and
Pérez-Zepeda et al. (2016a), a FI with at least 30 variables is capable of
predicting adverse health outcomes. In addition, the patterns of the FI
are insensitive to the choice and level (biochemical, cellular, organ,
functional, or clinical) of the variables included in its construction
(Blodgett et al., 2017).

Several theoretical complex network models have been proposed by
Farrell et al. (2016), Farrell et al.,, 2018, Mitnitski et al. (2017b),
Mitnitski et al. (2002), Rutenberg et al. (2017), and Taneja et al. (2016)
to understand how health deficits connect and interact with each other
and to clarify how the FI is associated with death, as a node and as an
end-point. In this context, the FI as a model studies an individual as a
whole and gives a numerical estimate of BA; the larger the number, the
higher the risk of having an adverse outcome. Additionally, the human
organism is modeled as a network of interacting nodes which are not
evenly interconnected. In this model, aging is not the result of specific
processes or diseases or any other time-dependent parameter, but ra-
ther an emergent phenomenon that contradicts programmed theories of
aging, and the classic linear medical uni-causal paradigm. Other net-
work approaches have also been implemented by (Hidalgo et al., 2009),
to analyze phenotypic disease networks. They found that disease pro-
gression can be successfully represented and studied by using network
methods, offering the potential to enhance our understanding of the
origin and evolution of human diseases.

The objectives of the present study are: 1) Analyze from the Mexican
Health and Aging Study (MHAS) (Wong et al., 2017), the relationship
between the deficits integrating the frailty index and death, through
probabilistic graphical models, which model conditional dependences
representing them through a graph; 2) Identify which are the more
relevant deficits among them all; 3) Identify the relationship and re-
levance between frailty deficits over different levels (tertiles) of the
frailty index.

2. Methods
2.1. Setting and participants

The network analysis is derived from the longitudinal data from the
third and fourth waves (2012 and 2015) from the Mexican Health and
Aging Study (MHAS) (Wong et al., 2017). In brief, the aims of the
MHAS are to examine the aging process and disability burden, to
evaluate the effects of individual behaviors, and to compare health
dynamics, among other aims. MHAS baseline was nationally re-
presentative of the 13 million Mexicans born prior to 1951. A direct
interview was sought with each individual and proxy interviews were
obtained when poor health or temporary absence precluded a direct
interview. A set of questionnaires (e.g., socio-demographic, health-re-
lated, cognitive performance, functional status, among others) was
applied head-to-head to community-dwelling Mexican older adults over
four waves collected in 2001, 2003, 2012, and 2015. We built all
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deficits from the 2012 wave and obtained mortality using information
from the 2015 wave (corresponding to mortality between 2012 and
2015). In the 2012 wave, 15,723 participants were assessed, including
9827 in the follow-up, and 5896 from a refresh sample (including
spouses of the chosen individuals, regardless of age), 1209 deaths were
reported by 2015.

For the purpose of the present study, we analyzed participants
50 years or older since we consider aging as a lifelong process, and we
have already demonstrated that frailty can begin early in life (Pérez-
Zepeda et al., 2016b); thus a sample of 14,872 individuals was ob-
tained. We discarded second or third wives or husbands (165 cases) to
avoid problems concerning marital status transitions through time;
additionally, since independence between individuals is assumed by
our models, analyses without these cases were made, finding for all
variables that the correlation between couples was low. For the gra-
phical models, we require information of each binary variable. Thus, we
discarded cases with missing values in any variable, and from a total of
14,707 cases, a final sample of 10,983 was retained for the present
analysis. It is important to notice that it is possible to calculate the FI
associated with cases without all variables. However, Bayesian network
analysis requires the values associated with each component of the FI.

3. Variables
3.1. Frailty

A set of 35 variables (deficits) was included, as determined by Searle
et al. (2008), as criteria (all self-reported data). Variables were related
to functional status, chronic diseases, self-rated health, cognitive status,
and depressive symptoms.

Most chosen variables contained categories “Yes” and “No,” and
some had two additional categories corresponding to “can't” or “doesn't
do.” These categories were properly assigned; for instance, for the
question “Because of a health problem, do you have difficulty dressing
yourself?” we considered that when a person answered “can't” or
“doesn't do”, a deficit was present. From the total of 35 deficits, each
individual had an FI score that was estimated as follows: sum of defi-
cits/35, with scores going from zero (lowest frailty burden possible) to
one (highest frailty burden possible). Cut-off points and deficits in-
cluded are presented in Table 1. The syntaxes used to generate all
variables are shown in Appendix 1 (Supplementary section).

In order to stratify by frailty level, tertiles of the total score of the FI
were obtained. Since there is not a consensus about how to define
biologically pertinent categories, we decided not to build the network
over a clinical pre-conception, and to use tertiles as natural cut-off
points that emerge from the data. The first tertile corresponds up to
0.11 and the second goes up to 0.20.

3.2. Mortality

Mortality from 2012 to 2015 was recovered from cumulative data
associated with wave 2015.

3.3. Analytic plan

A data set corresponding to all deficits in 2012 and mortality be-
tween 2012 and 2015 was built. Since our analyses are based on
probabilistic graphical models (Lauritzen, 1996), we first define the 35
deficits and mortality variables as vertices or nodes (which we gra-
phically represent in this paper by ellipses, set V). The edges (graphi-
cally represented by lines), or ties, linking those nodes (set E) were
obtained from our data through structural learning. Structural learning
allows us to obtain through algorithms the probabilistic relationship
between variables and a corresponding graph from observed data.
Hence, an undirected discrete graph G (V, E) (Bondy and Murty, 1976)
associated with a Markov network (a discrete graphical probabilistic
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Table 1
Cut points, frequency of deficits and tertiles of frailty.
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Variable description (name) All cases Frailty level
N = 10,983
Frequency (%) FI = 0-0.11 FI = 0.12-0.20 FI > 0.20
0—4 deficits 5-7 deficits deficits = 8
First tertile Second tertile Third tertile
N = 4747 N = 2649 N = 3587

Frequency (%) Frequency (%) Frequency (%)

Help dressing 983 (8.95) 25 (0.53) 90 (3.40) 868 (24.20)
Help getting in/out of a chair 3264 (29.72) 342 (7.20) 697 (26.31) 2225 (62.03)
Help walking around the room 160 (1.46) 1 (0.02) 4 (0.15) 155 (4.32)
Help eating 101 (0.92) 1 (0.02) 4 (0.15) 96 (2.68)
Help grooming 150 (1.37) 0 2 (0.08) 148 (4.13)
Help using toilet 128 (1.17) 0 4 (0.15) 124 (3.46)
Help up/down one flight of stairs 2594 (23.62) 148 (3.12) 465 (17.55) 1981 (55.23)
Help lifting 10 1bs 2557 (23.28) 174 (3.67) 430 (16.23) 1953 (54.45)
Help shopping groceries 865 (7.88) 28 (0.59) 58 (2.19) 779 (21.72)
Help with preparing a hot meal 630 (5.74) 90 (1.90) 97 (3.66) 443 (12.35)
Help taking medication 162 (1.48) 2 (0.04) 5(0.19) 155 (4.32)
Help with finances 169 (1.54) 6 (0.13) 9 (0.34) 154 (4.29)
Compared to 2 years ago: change in weight 2375 (21.62) 543 (11.44) 597 (22.54) 1235 (34.43)
Poor/regular self-rated health 1315 (11.97) 27 (0.57) 149 (5.62) 1139 (31.75)
Compared to 2 years ago much worst/worst self-rated health 3149 (28.67) 352 (7.42) 737 (27.82) 2060 (57.43)
Last 12 months: number of days in bed... due to sickness/injury 1941 (17.67) 321 (6.76) 447 (16.87) 1173 (32.70)
Within the past week: felt tired 6402 (58.29) 1535 (32.34) 1783 (67.31) 3084 (85.98)
Difficulty walking a block 1353 (12.32) 29 (0.61) 144 (5.44) 1180 (32.90)
Feel everything is an effort 3810 (34.69) 460 (9.69) 866 (32.69) 2484 (69.25)
Feel depressed 3705 (33.73) 347 (7.31) 937 (35.37) 2421 (67.49)
Feel happy 2187 (19.91) 214 (4.51) 456 (17.21) 1517 (42.29)
Feel lonely 3196 (29.10) 392 (8.26) 803 (30.31) 2001 (55.78)

Feel energetic
Hypertension/high blood pressure

5639 (51.34)
4727 (43.04)

1522 (32.06)
1154 (24.31)

1487 (56.13)
1235 (46.62)

2630 (73.32)
2338 (65.18)

Heart attack 378 (3.44) 34 (0.72) 83 (3.13) 261 (7.28)
Heart failure 207 (1.88) 9 (0.19) 36 (1.36) 162 (4.52)
Stroke 203 (1.85) 17 (0.36) 34 (1.28) 152 (4.24)
Cancer (in the last 10 years) 227 (2.07) 42 (0.88) 56 (2.11) 129 (3.60)
Diabetes 2394 (21.80) 510 (10.74) 603 (22.76) 1281 (35.71)
Arthritis/rheumatism 1490 (13.57) 188 (3.96) 319 (12.04) 983 (27.40)
Respiratory illness 639 (5.82) 94 (1.98) 134 (5.06) 411 (11.46)
Compared to 2 years ago: respondent reports his/her memory quality 2342 (21.32) 325 (6.85) 543 (20.50) 1474 (41.09)
Respondent's dominant hand strength 2566 (23.36) 211 (4.44) 550 (20.76) 1805 (50.32)
Anorexia: last 2 years: loss of appetite 515 (4.69) 41 (0.86) 87 (3.28) 387 (10.79)
Exercise: last 2 years: exercise or hard physical work = 3 times a week 6647 (60.52) 2259 (47.59) 1693 (63.91) 2695 (75.13)
Died between 2012 and 2015 574 (5.23) 109 (2.30) 115 (4.34) 350 (9.76)

model; (Agresti, 2012)) can be derived (Appendix 2). In these models,
the lack of an edge (or a line) between two variables means that the two
variables are conditionally independent given the other variables.
Since the number of vertices in our data was too large, structural
learning was possible by using two of the most used algorithms de-
signed for larger graphs associated with directed graphical probabilistic
models (Bayesian networks), hill-climbing (hc) and Peter and Clark (PC)
algorithms (Heckerman et al., 1995; Hgjsgaard et al., 2012; Spirtes and
Glymour, 1991). The former is based upon a score optimization and the
latter on a series of hypothesis tests concerning conditional in-
dependence (for more details see Appendix 2). From the hc algorithm, a
directed graph (directed acyclic graph or DAG) was obtained; however,
since we need an undirected graph preserving the same conditional and
marginal independences as in the DAG, we applied the so-called mor-
alization (a process used in graph theory) of the DAG. From the PC al-
gorithm, the undirected graph is directly obtained. For the structural
learning process with the hc algorithm, we used the Bayesian In-
formation Criterion (BIC) and specified zero random restarts (a number
used to avoid a local optimum when optimizing the score), as scores.
For the PC algorithm, conditional independence tests are required, and
since we are analyzing deficits, we defined that the tests corresponded
to binary variables using a log-likelihood ratio test and a significance
level of 0.05. No edges were forbidden or forced to appear with any
algorithm, thus, not allowing any preconception. To see the robustness
of the results obtained, some of these default values were modified, and

the resulting models were not too different (e.g., using the Bayesian
Dirichlet score, BDe, with the “e” for likelihood-equivalence, instead of
BIC score and three random restarts, 95.28% of the edges in the original
model were preserved).

In order to compare with simpler models, we applied a pairwise
correlation approach and obtained the correlation plot based on
Pearson correlation by using the CorrPlot package from R. The statis-
tical software, R-studio (R-version 3.3), was used through the bnlearn
(Scutari, 2009) and pcalg (Kalisch et al., 2012) packages to implement
in our data set (without missing values) the hc and PC algorithms, re-
spectively.

Using the aforementioned processes, four graphs were obtained
from each algorithm, one for all observations and three corresponding
to the frailty levels obtained from the tertiles (eight graphs in total).
The first frailty level corresponds to an FI from 0 to 0.11 (O to 4 defi-
cits), the second frailty level corresponds to an FI from 0.12 to 0.20 (5
to 7 deficits), the third frailty level corresponds to an FI greater to 0.20
(8 or more deficits).

We used both, hc and PC algorithms, to see the robustness of the
obtained relationships, the associated graph obtained from the PC al-
gorithm would typically have fewer edges. Technical details of gra-
phical models and algorithms are explained in Appendix 2.

In the graphs (Figs. 1 to 4), each node represents either a frailty
deficit or death. If a node has many edges with other nodes, then there
is more dependence among them. In these networks, the association is
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not measured by pairs through a correlation but through a decom-
position of the joint probability, representing in a more precise way the
relationship among all variables.

Each graph contains graphical statistical properties associated with
it and colored nodes representing groups, nodes are arranged clockwise
from less connected to most connected node starting from below (in
each figure it is indicated the most connected node). Nodes are colored
according to the following classification: Yellow-AS (Affective Status:
No Happy, Lone, No energy, Depressed, Tired, Effort); Light Blue-
Symptoms (Anorexia, Bed, Lost of weight); Red-Dead; Gray-SRH (Self-
rated health: Health, H_change); Green-ADL-IADL (activities of daily
living and Instrumental activities of daily living: In_out_chair, Stairs,
Lift, Shop, Dress, Walk, Eat, Groom, Meals, Meds, Finance Toilet);
Orange-Physical Health (Grip, Exercise); Pink (CLD, Stroke, Cancer,
CHF, Arthritis, Heart_Attack, Diabetes, High_BP); Navy Blue-Cognition
(Memory). Edges are colored in red for those deficits connecting with
dead.

Below each figure, there is a table with some of the most important
properties of the network. Such properties are clustering coefficient
(the number of closed triplets, or 3 X triangles, over the total number of
triplets), network heterogeneity (reflects the tendency of a network to
contain hub nodes), connected components (a maximal set of nodes
such that each pair of nodes is connected by a path), isolated nodes (a
connected component with only one vertex), network centralization
(measure of how much the degree of every node is far from the degree
of the highest degree node), shortest paths (how many paths between
any two pairs of nodes in the network have the fewest number of links),
average number of neighbors, and network density (comparison be-
tween the edges available in a graph and a graph with all possible
edges). At the top of figure and table, we indicate the algorithm and
sample used to obtain each network.

Additionally, the following centrality measures used in social net-
work analysis are calculated for each node and are included in
Appendices 3 and 4: degree of the graph (k, number of edges connected
to the node), betweenness centrality (Cp, extent to which a node sits
“between” pairs of other nodes in the network, such that a path be-
tween other nodes has to go through that node), and closeness cen-
trality (C, inverse of the sum of all distances between node i and all
other nodes in the network).

4. Results

From the total sample (n = 10,983), 56.21% were women
(n = 6173). The mean age was 64.58 years (SD = 9.26, R = 50-102).
The number of deaths between 2012 and 2015 was 574 (5.23%). The
mean FI, considering all observations was 0.18 (SD = 0.13,
R = 0-0.80).

The description, cut-off values for each deficit, number and per-
centage of participants with deficits in the total sample and by frailty
tertile are presented in Table 1. Deficits with the higher percentage of
participants were those related with mobility (help in/out of a
chair = 29.72%, help up/down one flight of stairs = 23.62%, and help
lift ten pounds = 23.28%). Also, components of the depression scale
resulted in high percentages (feel depressed = 33.73% and feel
lonely = 29.10%). In participants, 43.04% reported a diagnosis of hy-
pertension and 21.80% reported a diagnosis of diabetes. Physical in-
activity was present in 60.52% (Table 1).

Appendices 3 and 4 show three centrality measures: degree, be-
tweenness, and closeness, and connected variables in the full sample
and by frailty tertile in the hc and PC algorithms. The number of con-
nections increased according to the level of frailty. Groups of deficits
were connected; these groups get larger as the level of frailty increases.
Almost all deficits related to mobility were interconnected, particularly
those variables that indicated severe impairment. Such was the case for
help getting dressed, using the toilet and bathing. On the other hand,
mental health deficits connected with each other as well.
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The graphs obtained by using both the hc and PC algorithms are
presented in Figs. 1 to 4. Fig. 1 corresponds to the graphical models
associated with people 50 years and older, using the hc and PC algo-
rithms for all observations. The network obtained from the hc algorithm
does not have any non-connected nodes, and the most connected nodes
are self-rating of health with 18 connections, difficulty walking a block
with 16 connections, help lifting 10 pounds and report of current health
comparison to two years ago, both with 14 connections.

Apart from the number of connections (degree), the other two
centrality measures, betweenness and closeness, can be used to de-
termine the most relevant nodes. Considering the hc algorithm, the
greatest values associated with these two measures corresponded also
to self-rating of health and difficulty walking a block (betweenness of
0.18 and closeness of 0.66 for the former, and betweenness of 0.21 and
closeness of 0.64 for the latter, Appendix 3), which means that these are
the most central nodes (hubs) in the network.

Figs. 2, 3 and 4 correspond to graphical models associated with each
of the three frailty levels. An increase in the number of connections was
steady, according to the level of frailty, but the graph for the full sample
had a higher number of connections.

Considering the hc algorithm, the network corresponding to the first
level of frailty (Fig. 2) presented eight non-connected nodes: help
walking around the room, managing medicines, managing finances,
cancer, lung disease, self-reported handgrip strength, anorexia, and
death. Therefore, for the people with the lowest level of frailty, these
nodes were independent of all the other nodes. Additionally, three
dumbbells arose: eat-stroke, shop-meals, and heart attack-chronic heart
failure. Hence, each one of these pairs was dependent among them-
selves but independent from all the other deficits. The most-connected
nodes in this case were not feeling energetic, tiredness, and not doing
exercise or hard work regularly, with 8, 7, and 6 connections respec-
tively. All of them related to feeling the need to rest.

For the network corresponding to the second level of frailty (Fig. 3)
and obtained from the hc algorithm, there was only one independent
node: help with eating. The most connected nodes were feeling de-
pressed, feeling tired, and feeling that everything is an effort with 16,
14, and 9 edges, respectively. For the network corresponding to the
highest level of frailty and obtained from the hc algorithm (Fig. 4),
there was one non-connected node, which was lung disease, while the
most-connected nodes were help shopping groceries with 13 edges,
help with preparing hot meals with 11 connections, and help walking
around a room and difficulty walking a block both with 10 edges.

Connection with death happened first in the second frailty level
with depression and cancer, and in the highest frailty level with critical
basic ADLs like difficulty walking a block and help with preparing hot
meals as well as cancer.

5. Discussion

In this study, we were able to model the frailty components and
mortality with data corresponding to a Mexican aging study as a
probabilistic graphical model. We identified that self-report of health
and difficulty walking a block are the most relevant nodes, since they
are the most connected nodes, nearest to other nodes, and can be
considered as intermediaries between all nodes. This means that these
nodes are more relevant than others when defining the FI, and such
importance could be considered in the index calculation. We also ob-
served that mobility nodes are very interconnected, hence, there is a lot
of dependence between them, forming even perhaps a cluster. For the
two lowest frailty levels, nodes related with vitality were the most re-
levant and there were a lot of non-connected nodes, which means that
the answer provided by individuals corresponding to vitality are more
or less independent to the ones in other questions, being these vitality
nodes central when clusters of probabilistic dependence are formed
with variables related with them.

Network approaches help us to analyze the complex phenomena
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and dynamics of aging (Network Theory of Aging) (Kowald and
Kirkwood, 1994; Kriete et al., 2006), as well as to understand the origin
and evolution of human diseases (Hidalgo et al., 2009). In the present
study, we performed a network analysis based on empirical data from
MHAS; in order to increase the knowledge on the nature of frailty as a
network. To the best of our knowledge, this is the first report using
actual empirical data approached by probabilistic graphical models in
the field of frailty research. Our findings suggest a trend towards de-
terioration with increasing levels of the frailty index that contributes to
clarifying the specific nature of each node integrating the FI in the
successive stages of frailty. This also adds to what is already known
about frailty dynamics according to severity levels. There is a wide
variety of possible interactions between the deficits that integrate an FI.
These connections vary according to incremental scores of the FI. It is
worth noting that the characteristics of the FI used in this study are
similar to those previously reported regarding associated risks. The
higher the FI score, the higher the mortality, however, our network
analysis results differ from those previously reported from in silico si-
mulations (Farrell et al., 2016; Mitnitski et al., 2017b; Rutenberg et al.,
2017; Taneja et al., 2016), since our methodology was based on the
information of all individuals to build a network representing in our
case an emerging feature: the joint probability distribution and asso-
ciations between variables by using Bayesian networks, in contrast with
the methodology used by Mitnitski et al., where they simulated a net-
work for each individual according to the theoretical connections that
all deficit and death nodes could have.

It is important to notice that the networks obtained from the sto-
chastic model of interacting deficits proposed previously (Farrell et al.,
2016; Taneja et al., 2016) and the networks resulting from the gra-
phical model that we present here, are based on different approaches
and therefore the interpretation of the graphs is different. Our approach
describes the emerging properties derived from the cumulative in-
formation coming from a representative sample of a population with 35
frailty deficits and a mortality node. Within our network, nodes re-
present the deficits while edges represent dependencies. For example,
nodes that are not connected represent deficits that are conditionally
independent of each other given the rest of the variables. Unlike the
previous approach (Farrell et al., 2016; Taneja et al., 2016), the mor-
tality node in this network is not the most connected node, but the
deficits that are connected with death are the ones that influence this
outcome for the individuals represented in the network.

Our approach shows that the interactions within deficits vary ac-
cording to increasing values of the FI score. As the FI increases, the
complexity of the network and the number of connections progressively
increase. Interestingly, there is no relationship between the frequency
of a deficit and the number of connections. In addition, the progression
of the connected nodes in the different tertiles shows a downward
gradient of decreasing vitality.

When analyzing how deficits interact with each other, some other
conclusions could be drawn that merit further testing. As already stated
by Lipsitz (Lipsitz, 2016), it is still not clear if frailty results from the
loss of complexity in the interactions of its nodes, independently of
which specific nodes are interacting, and it is a matter of study how and
at what rates deficits aggregate. The nodes integrating the frailty index
have different and probably specific meanings and interacting path-
ways. FI seems to change each year of age between 3 and 6% in both
human and murine models. (Rockwood and Howlett, 2019). Never-
theless, there is no certainty on the nature of individual deficits, for
example, if an individual has an FI of =0.7, the addition of one more
deficit would lead to death, regardless of the added deficit.

The network obtained under the PC algorithm provides fewer edges
than those obtained through the hc algorithm (Appendix 2). The real
dependence among all variables, which is what we are modelling, lies
between the dependence obtained from both algorithms. Hence, the hc
and PC methods were used to prove the robustness of our results.

Almost all edges from the PC algorithm are preserved when
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compared with the hc algorithm. When using all the observations,
88.24% of the edges obtained through the hc algorithm were the same
as the ones obtained from the PC algorithm, which is a robust finding
(shared edges are marked in Appendices 3 and 4, and the comparison
between shared edges is shown in Appendix 5). Interestingly, in-
dependently of the algorithm used, there is a change between deficit
connections for the different frailty groups; moreover, not all deficits
have the same importance in the network.

Regarding the two algorithms, hc and PC, the most connected node
shared by both algorithms in the global network is report of current
health comparison to two years ago. For the other frailty levels, they
are: 1st frailty level (not feeling energetic, tiredness), 2nd. Frailty level
(tiredness and feeling that everything is an effort), and 3rd Frailty Level
(help shopping groceries). The most connected nodes shared by both
algorithms could be characterized as the more relevant in our findings,
interacting with a greater number of deficits.

According to our study, FI shows different levels of conditional
probabilistic dependence, and specific deficits seem to act synergisti-
cally in the presence of others. Using the hc algorithm, for example, one
of the most connected nodes is self-perception of health in the global
network. Lack of energy, feeling tired, not exercising, and needing help
walking around the room are the most connected nodes in the first,
second and third level of frailty. The constant presence of these vari-
ables adds to the hypothesis of decreasing vitality (energy management
blockade) and consecutive functional impairment underlying the frailty
trajectory. Besides, the feeling of autonomy (associated with an internal
control locus) leads to a higher subjective wellbeing. In this context,
vitality and autonomy could be more important for health than the
presence of chronic diseases (Abizanda et al., 2016; Geisler et al.,
2016).

In addition, a worsening intrinsic capacity correlates with lack of
energy and vitality (Zengarini et al., 2015, 2016) and it could be seen
how dependency and need for care arise. There is not only low energy,
but specific clinical implications that have a significant impact on
functional ability leading to dependency and need for care. In fact,
available evidence suggests that the higher the levels of frailty mea-
sured with the FI, the higher the resting metabolic rate, pointing to an
overall disruption of energy metabolism in older adults (Kim et al.,
2014). In addition, both frailty and abnormal energy metabolism have
been related to decreased muscle mass and function, a potential area of
intervention. It could be argued that these deficits will not universally
appear in other populations or even in the same cohort over time.
Notwithstanding, as previously stated, energetic disruptions seem to be
a constant in the aging individual and could be a plausible explanation
to our findings.

It is important to notice that the edges in undirected discrete net-
works are not obtained from a correlation matrix. They are derived
through a decomposition of the probability associated with all variables
at the same time according to independence relationships (marginal
and conditional). Additionally, the hc algorithm is based on a score.
Thus, a threshold defining a level of association between variables is
not necessary: the data and the edges added or deleted are enough to
iteratively calculate the score. Hence, structural learning through scores
is not dependent on correlations. For instance, for a correlation coef-
ficient above 0.6, the resulting network has only two edges (Fig. 5),
resulting in a completely different network from the ones obtained
before. For the PC algorithm, statistical tests associated with condi-
tional independences and a fixed significance level of 0.05 are used.
Hence, a “distance” or “association” measure between nodes is also
unnecessary.

Frailty is still a matter of discussion in the aging research area. One
of the main current controversies relates to the operationalization of
this condition and its implications both at the individual and population
health levels. Reaching a full understanding of the mechanisms behind
deficit interactions and recognizing the most important deficits (i.e.
most and less connected nodes in the network) will allow us to move
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forward towards the development of interventions to prevent or alle-
viate frailty.

However, several issues remain to be clarified with ongoing re-
search. All the variables included in the FI were obtained by self-report,
and the interactions could be influenced by how the questions were
formulated. Another flaw is that even though interactions among nodes
differ in the FI tertiles, we are yet to prove that there is a precise tra-
jectory when we observe the behavior of the network over a time frame.
A longitudinal study of the trajectories of these interactions is ongoing
in order to clarify this issue.

The emerging needs of frail older people continue to grow and al-
ready flood our clinical services. There is an urgent need for a deeper
understanding of the phenomenon in order to develop newer ap-
proaches that lead to better solutions for their care. Complex network
analysis is one of these new approaches. Its relevance has been de-
monstrated when applied to other disciplines, and it has provided es-
sential solutions (Kalisch et al., 2012). Future research must be focused
on the true meaning of the possible interactions that we propose. A
deeper understanding of the interplay of interactions between deficits,
and its change over time, is also needed in order to reach an under-
standing about the resulting trajectories.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.exger.2019.110747.
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