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Random-matrix spectra as a time series
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4Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
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Spectra of ordered eigenvalues of finite random matrices are interpreted as a time series. Data-adaptive
techniques from signal analysis are applied to decompose the spectrum in clearly differentiated trend and
fluctuation modes, avoiding possible artifacts introduced by standard unfolding techniques. The fluctuation
modes are scale invariant and follow different power laws for Poisson and Gaussian ensembles, which already
during the unfolding allows one to distinguish the two cases.
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The study of spectral fluctuations within the framework
of random-matrix theory (RMT) is a standard tool in the
statistical study of quantum chaos in the excitation spectra of
quantum systems [1–4]. Recently, the approach has found new
applications in many fields, such as in the study of eigenspectra
of adjacency matrices of networks [5–7], eigenspectra of
empirical correlation matrices in finance [8–10], the climate
[11], electro- and magnetoencephalography [12–14], and in
complex systems [15]. The interest in this approach lies in the
fact that the level density fluctuations ρ̃(E) = ρ(E) − ρ(E)
around the smooth global density ρ(E) are universal and
indicate the underlying symmetry class of the system [2,16].
On the other hand, the global level density ρ(E) is system
dependent, and an unfolding procedure needs to be performed,
to separate the global and the fluctuating parts [1]. The
unfolding is straightforward if an analytical formula is known
to describe the global level density ρ(E) for the system under
study, such as, e.g., the Gaussian and semicircle distributions
for the Poisson matrix ensemble and the Gaussian othogonal
ensemble (GOE) from RMT [2], or the Marchenko-Pastur
distribution for the Laguerre ensemble of random Wishart
correlation matrices [17]. However, such analytical formulas
are formally only adequate in the asymptotic limit for spectra
with an infinite number of levels. Often, an analytical form for
ρ(E) is unknown, as is the case for adjacency matrices [5]. In
practical cases, having finite, albeit large matrices, the usual
approach is then to project the sequence of ordered eigenval-
ues into unfolded values E(n) → N [E(n)], using a smooth
(often polynomial) approximation N (E) to the accumulated
density (step) function N (E) = ∫ E

−∞ ρ(E′)dE′ [1,5,18]. After
unfolding, the short-range and long-range correlations can be
quantified using standard fluctuation measures such as the
nearest-neighbor spacing (NNS) distribution, number variance
�2, and �3.

In a recent approach, the unfolded fluctuations of the
accumulated level density function Ñ (E) = N (E) − N (E)
(also called δn function) were interpreted as a time series
[4,18,19]. This treatment opened the field to the application of
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specialized techniques from signal analysis, such as Fourier
spectral analysis [4,7,18,19], detrended fluctuation analy-
sis [20–22], wavelets [23], empirical mode decomposition
[24–26], and normal-mode analysis [27,28]. The result of
these investigations is that for Gaussian RMT ensembles,
the fluctuation time series is scale invariant (fractal), which
in the Fourier power spectrum is reflected in a power
law,

P (f ) ∝ 1/f β, (1)

where f is the frequency of the periodic modes in which
the time series is decomposed, whereas when more general
nonperiodic modes are used, a “generalized power spectrum”
or so-called “scree diagram” results,

λk ∝ 1/kγ , (2)

where k is the index (order number) of the nonperiodic modes,
and where β = γ = 2 (Poisson limit) and β = γ = 1 (GOE
limit), such that the power law does not seem to depend on the
basis used to decompose the time series [29].

All fluctuation measures mentioned are calculated after the
prior technical step of the unfolding of the original eigenvalues.
However, the statistical results can be quite sensitive to the
specific unfolding procedure used (see, e.g., [30,31]). In signal
analysis, a similar problem is how to define the trend of
nonstationary time series. It was concluded that the trend is an
intrinsic property of the time series that should not be defined
by an external observer but should be obtained data adaptively
from the data itself [32].

The purpose of the present contribution is twofold: First, we
propose to interpret the spectrum of original eigenvalues E(n)
directly as a time series, such that data-adaptive techniques
from signal analysis can be used to decompose the sequence
in a global and local part,

E(n) = E(n) + Ẽ(n). (3)

Secondly, we will present one particular method with which
this unfolding can be realized. We will see that the power law of
Eq. (2) is obtained already during the proposed data-adaptive
unfolding procedure.
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FOSSION, TORRES VARGAS, AND LÓPEZ VIEYRA PHYSICAL REVIEW E 88, 060902(R) (2013)

In the present contribution, we will consider Poisson and
GOE spectra ensembles. The spectra can be unfolded in a data-
adaptive way applying singular value decomposition (SVD) to
the ensemble, and the fluctuations will be characterized by the
power laws of Eqs. (1) and (2). The unfolding presented here is
valid in the case of ergodic spectra, where the ensemble mean
is representative for the individual spectra. More complex
situations, e.g., with nonergodic spectra, can be unfolded
individually, using a variant of the present method based on
singular spectrum analysis. This, and other topics, such as the
reconstruction of traditional fluctuation measures (NNS, �2,
and �3), and the study of transitional spectra between the
Poisson and GOE limits, will be discussed elsewhere [33].

Consider an ensemble of m = 1, . . . ,M eigenspectra
E(m)(n), where each spectrum consists of n = 1, . . . ,N levels.
Each spectrum is conveniently accommodated in a row of the
M × N dimensional matrix X, which can now be interpreted
as a multivariate time series,

X =

⎛⎜⎜⎜⎜⎝
E(1)(1) E(1)(2) · · · E(1)(N )
E(2)(1) E(2)(2) · · · E(2)(N )

...
...

. . .
...

E(M)(1) E(M)(2) · · · E(M)(N )

⎞⎟⎟⎟⎟⎠ . (4)

SVD decomposes X in a unique and exact way as

X = U�VT =
r∑

k=1

σk �uk �vT
k , (5)

where � is an M × N -dimensional matrix with only diagonal
elements that are the ordered singular values σ1 � σ2 � · · · �
σr , where r � Min[M,N ] = rank(X). The vectors �uk are
orthonormal, and constitute the kth columns of the M × M-
dimensional matrix U. The vectors �vk are orthonormal as well,
and constitute the kth columns of the N × N -dimensional
matrix V. The notation �uk �vT

k ≡ �uk ⊗ �vk is used to indicate
the outer product of vectors �uk and �vk . In this way, any matrix
row of X containing a particular excitation spectrum E(m)(n)
can be written as

E(m)(n) =
r∑

k=1

σkUmk �vT
k (n), (6)

and can be interpreted as a superposition of basis vectors �vk ,
which are common for the whole ensemble X, and where
the matrix elements Umk serve as coefficients. On the other
hand, the singular values σk can be interpreted as weights that
distinguish between trend and fluctuation components.

A spectrum E(n) is a monotonous function that has a
dominant trend, with superposed fluctuations that are typically
orders of magnitude smaller. Consequently, the variability of
a spectrum will be due principally to its trend components,
characterized by very large partial variances λk = σ 2

k , whereas
the fluctuation components will be associated with much
smaller partial variances. Thus, in Eq. (6), we expect to be

able to separate in a data-adaptive way the trend E
(m)

(n) from
the fluctuations Ẽ(m)(n) in the following way:{

E
(m)

(n) = ∑nT

k=1 σkUmk �vT
k (n),

Ẽ(m)(n) = ∑r
k=nT +1 σkUmk �vT

k (n),
(7)
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FIG. 1. Results of the data-adaptive unfolding with SVD of an
ensemble of m = 1, . . . ,M spectra E(m)(n) with n = 1, . . . ,N levels
for the Poisson [left-hand panels (a)] and the GOE case [right-hand
panels (b)], using M = 100,500,2000 and N = 2000. (Upper row)
Scree diagram of ordered partial variances λk , of which λ1 and

λ2 correspond to the trend E
(m)

(n), whereas λk with k = 3, . . . ,r

corresponds to the fluctuations Ẽ(m)(n) and follow a power law
λk ∝ 1/kγ with γ = 2 (Poisson) and γ = 1 (GOE). The total variance
λtot = ∑

k λk is proportional to the ensemble size M . (Second row)
Level density ρ(E) (histogram), compared to the analytical mean
density ρ(E) from the Gaussian and semicircle laws (gray line), and
to the data-adaptive mean density ρ(E) (black line). (Third row)
Level fluctuations Ẽ(m)(n). (Bottom row) The corresponding Fourier
power spectrum follows a power law P (f ) ∝ 1/f β with β = γ = 2
(Poisson) and β = γ = 1 (GOE), shown for one particular spectrum
realization (gray curve) and for the ensemble mean (black curve).

where nT is the number of components to be included in the
trend (excluded from the fluctuations).

In Fig. 1, results are shown for SVD applied to Poisson
and GOE ensembles with M = 100,500,2000 realizations
E(m)(n), where each spectrum contains N = 2000 levels. To
take into account only the central part of the spectrum (within
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FIG. 2. The vectors �vk constitute an orthonormal basis for the
ensemble X of Eq. (4). The first eight vectors �vk are shown for
ensemble size M = 500, (a) for the Poisson case, and (b) for the
GOE case. Vectors �v1 and �v2 are monotonous and serve as a basis for
the trend E

(m)
(n) of all realizations m = 1, . . . ,M of the ensemble.

The higher-order vectors �vk with k = 3, . . . ,r oscillate and serve as
a basis for the fluctuations Ẽ(m)(n).

two standard deviations), 2.5% of the lower and upper levels
were discarded. From the scree diagram of ordered partial
variances follows that λ1 and λ2 are orders of magnitude larger
than the other partial variances, and that they are responsible
for the major part of the total variance λtot = ∑

k λk , both in
the Poisson as in the GOE case. In Fig. 2, it can be seen that
the associated basis vectors �v1 and �v2 behave monotonically.
Based on these arguments, it can be concluded that the first two

vectors constitute the basis states for the trend E
(m)

(n) of each
of the realizations of the Poisson and the GOE ensemble [see
Eq. (7)]. On the other hand, the larger-order partial variances
λk with 3 � k � r behave as the power law of Eq. (2) with
γ ≈ 2 (Poisson) and γ ≈ 1 (GOE), so that already during the
unfolding procedure one distinguishes between the two cases.
The vectors �vk with 3 � k � r , associated to the larger-order
partial variances, oscillate, and they constitute the basis vectors
for the fluctuations Ẽ(m)(n) [see Eq. (7)]. It can be appreciated
that the more realizations M the ensemble contains, the larger
the total variance λtot of the ensemble becomes (λtot ∝ M),
and the larger the number r of components with which each
spectrum is decomposed. Because of the power law λk ∝ 1/kγ

of Eq. (2), higher-order λk will contribute less to the total
variance, and in order for the behavior of the scree diagram to
be independent from the ensemble size, the individual partial
variances λk must also grow with M . In the following, results
will be presented for intermediate ensemble sizes of M = 500,
because for small M the range of the power law of Eq. (2) is
reduced, whereas for very large M the basis {�vk,k = 1, . . . ,r}

can become overcomplete, leading to a tail of insignificantly
small partial variances λk in the scree diagram. However, the
statistical results are independent of the particular choice of
M . Note that the vectors �vk with k � 3 correspond with the
fluctuation normal modes of Refs. [27,28] that were obtained
after a prior and separate unfolding step. In the present contri-
bution, both the trend basis vectors �v1,�v2 and the fluctuation
basis vectors �vk (k � 3) are obtained during the data-adaptive
unfolding itself. There is no formal difference between trend
and fluctuation basis vectors, other than the former vectors
behaving monotonically. Also in [28], it was stated that an
appropriate unfolding procedure should reflect the spectral
scale which is relevant for the physical properties in question,
and that such a scale is not always apparent given the usual ad
hoc treatment of unfolding. In the context of the determination
of the trend of nonstationary time series, it is known that
without a reference to a particular scale the trend will be con-
fusingly mixed with the local fluctuations [32]. In the present
contribution, the different scales of the trend and fluctuation
modes follow directly from the scree diagram of ordered partial
variances λk .

Also in Fig. 1, results are shown for one particular
realization of a Poisson and a GOE spectrum, for the mean level
density ρ(E), the fluctuations Ẽ(m)(n), and the corresponding
Fourier power spectrum P (f ), after the data-adaptive sepa-
ration of trend and fluctuation modes as described above. It
can be seen that in the GOE case, the global level density
ρ(E) has converged to the asymptotic semicircle law. On the
other hand, in the Poisson case, the Gaussian distribution does
not describe well the global level density. Thus, although an
analytical formula is known to describe the global level density
in the asymptotic case, here, it cannot be applied to perform the
unfolding of the spectrum of the present finite matrix. On the
other hand, the global level density ρ(E) can be determined in
a data-adaptive way as the density ρ(E) of the smooth trend

approximation E
(m)

(n) to a specific spectrum of interest. It
can be seen that ρ(E) describes well the global level density in
both the Poisson and the GOE case. Next, the level fluctuations
Ẽ(m)(n) of one particular Poisson and GOE spectrum are
shown, according to Eq. (7), with nT = 2 trend components
as clearly follows from the scree diagram. Finally, the Fourier
power spectrum is presented for the level fluctuations shown.
It can be seen that the power spectrum obeys the power law of
Eq. (1) with β = γ = 2 in the Poisson case, and β = γ = 1
in the GOE case. This power law is even more apparent if the
power spectrum is averaged over all realizations m = 1, . . . ,M

of the ensemble. Note that near the maximum frequency
f = N/2 (Nyquist frequency), there is a deviation from the
power law, as previously described in Ref. [19].

In conclusion, the unfolding procedure is a long-standing
problem in the field of RMT, and the complications of
the unfolding technique have become topical again due to
the recent spread of RMT techniques to areas as diverse as the
study of eigenspectra from adjacency matrices in networks,
and correlation matrices in finance, the climate, magneto- and
electroencephalography, etc. In the present contribution, first,
we suggested interpreting a matrix eigenspectrum directly as
a time series and applying techniques from signal analysis to
perform the unfolding procedure of separation of trend and
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fluctuation components in a data-adaptive way. Secondly, we
proposed one particular method, based on SVD with which this
unfolding can be realized. We applied the method to ensembles
of Poisson and GOE spectra. Already during the unfolding
procedure, a power law is obtained for the fluctuations that
distinguishes between the Poisson and the GOE case. Such
a data-adaptive unfolding should be general enough to be
applicable as well to spectra with other symmetries.
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