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Introduction

Resveratrol, a polyphenolic-stilbene, has received increas-
ing attention in the last decade due to its wide range of bio-
logical activities, which include antioxidant, anti-inflammato-
ry and anti-tumoral effects.1-3 Although some progress has
been made in the identification of the mechanism(s) underly-
ing the various beneficial effects of resveratrol, much still
remains to be investigated.3,4 Most of the studies carried out
to evaluate the effects of resveratrol on erythropoiesis have
been performed using K562 erythroleukemia cell lines5-7 and
therefore very limited information is available regarding the
effect of resveratrol on normal erythropoiesis.8 In these stud-
ies, resveratrol has been shown to increase fetal hemoglobin
synthesis (50 mM resveratrol),6,9 to attenuate the TNF-α
effects on erythropoiesis (0.4 mM, 10 -30 mM resveratrol)8 and
to block cell growth affecting cell cycle and redirecting cells
towards either apopotosis or differentiation (60 mM resvera-
trol).5-7 Recently, the beneficial effects of resveratrol supple-
mentation on pathological erythropoiesis have been reported
in a mouse model for Fanconi’s anemia (FA), which is charac-
terized by the hypersensitivity of FA cells to reactive oxygen
species (ROS).10 The dynamic process of erythroid differenti-

ation is characterized by the production of reactive oxygen
species (ROS) both in response to erythropoietin signaling
and to the large amount of iron imported into the cells during
heme biosynthesis.11 The intracellular response to oxidative-
stress in erythropoiesis involves the transcription factor,
Forkhead box O3a (FOxO3), which controls pathway(s) reg-
ulating erythroid maturation and the levels of oxidative stress
in murine erythropoiesis.12,13 FOxO3a is negatively regulated
by the serine-threonine kinase Akt, which phosphorylates
FOxO3a promoting its translocation from the nucleus to the
cytoplasm and resulting in inhibition of FOxO3 transcription-
al activity.12-14 Activation of FoxO3a has been proposed as a
protective mechanism in pathological erythropoiesis charac-
terized by abnormal ROS levels such as β-thalassemia.12

β-thalassemias (β-thal) are common inherited red cell disor-
ders characterized by absent or reduced synthesis of β-globin
chains. Despite extensive knowledge of the molecular defects
causing β-thalassemia, less is known about the mechanisms
responsible for the associated ineffective erythropoiesis and
reduced red cell survival.11,15-20 Increased levels of reactive oxy-
gen species (ROS) have been reported to contribute to the
anemia of β-thalassemia, although the effects of ROS have
not been fully defined.11,15-18 Exogenous anti-oxidant mole-
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Resveratrol, a polyphenolic-stilbene, has received increased attention in the last decade due to its wide range of bio-
logical activities. Beta(β)-thalassemias are inherited red cell disorders, found worldwide, characterized by ineffective
erythropoiesis and red cell oxidative damage with reduced survival. We evaluated the effects of low-dose-resvera-
trol (5 mM) on in vitro human erythroid differentiation of CD34+ from normal and β-thalassemic subjects. We found
that resveratrol induces accelerated erythroid-maturation, resulting in the reduction of colony-forming units of ery-
throid cells and increased intermediate and late erythroblasts. In sorted colony-forming units of erythroid cells
resveratrol activates Forkhead-box-class-O3, decreases Akt activity and up-regulates anti-oxidant enzymes as cata-
lase. In an in vivomurine model for β-thalassemia, resveratrol (2.4 mg/kg) reduces ineffective erythropoiesis, increas-
es hemoglobin levels, reduces reticulocyte count and ameliorates red cell survival. In both wild-type and β-tha-
lassemic mice, resveratrol up-regulates scavenging enzymes such as catalase and peroxiredoxin-2 through
Forkhead-box-class-O3 activation. These data indicate that resveratrol inhibits Akt resulting in FoxO3 activation
with upregulation of cytoprotective systems enabling the pathological erythroid precursors to resist the oxidative
damage and continue to differentiate. Our data suggest that the dual effect of resveratrol on erythropoiesis through
activation of FoxO3 transcriptional factor combined with the amelioration of oxidative stress in circulating red cells
may be considered as a potential novel therapeutic strategy in treating β-thalassemia.
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cules might represent complementary therapeutic strate-
gies to counteract the toxic effects of ROS in β-tha-
lassemia. However, few of them have been shown to ben-
eficially affect in vivo β-thalassemic red cell features and/or
thalassemic ineffective erythropoiesis in vivo.16,21

Methods

In vitro erythropoiesis from CD34+ cells from 
peripheral circulation of normal and 
β-thalassemia-intermedia subjects 

Regarding cell culture, phenotypic analysis and cell sorting strat-
egy, peripheral blood from adult normal volunteers and from
transfusion independent β-thalassemia patients (β-thalassemia
intermedia) was collected, after obtaining informed consent
according to the guidelines established by the Ethic Committee for
human subject studies of the University of Milan and the princi-
ples of the Declaration of Helsinki. Approval by the Ethic
Committee of the University of Milan for human erythroid pre-
cursors studies was obtained. We analyzed 20 erythroid cultures
from the peripheral blood of different normal subjects and 20 ery-
throid cultures from 10 homozygous β-thalassemic intermedia
patients (β0cod39).11,17 Details on cell cultures are reported in the
Online Supplementary Appendix. The Resveratrol concentration (5
mM; Sigma Aldrich, St. Louis, MO, USA) used in this study was
selected from dose-response studies (Online Supplementary Figure
1SA) and a review of the literature.3,5,6,8-10,22 The erythroid cell anti-
gen profile and the sorting of erythroid precursors were carried out
as reported by Merry-Weather Clarke et al.23 Details are reported
in the Online Supplementary Appendix and Figure S1B).
Quantitative real-time PCR was carried out as previously

described.24 Details are reported in the Online Supplementary
Appendix. The primers used are listed in Online Supplementary
Tables S1 and S2. 
For immunoblot-analysis of sorted human erythroid precursors

and immunofluorescence assay for FoxO3a, 1 x 106 sorted CFU-E
cells from both normal and β-thalassemic were solubilized as pre-
viously described.11,20 Details on immunoblot and immunofluores-
cence analysis are reported in the Online Supplementary Appendix.
Whenever indicated, sorted CFU-Es were separated into cytosol
and nuclear fractions as previously reported.25

The study was carried out in accordance with the Scientific
Committee for Animal Experimentation (CIRSAL, University of
Verona, Italy). C57B6/2J mice, wild-type controls (WT) and
Hbbth3/+ mice were used as β-thalassemia models. Age- and sex-
matched 2-month old mice (weight 20 g) were studied. The
female/male ratio in the different groups was 1:1. Based on previ-
ous studies on resveratrol bioavailability in vivo,26-28 the mice were
placed either on resveratrol (2.5 mg/kg incorporated into AIN-93G
diet) or standard diet (AIN-93G diet). The mice were fed with
resveratrol diet for six months. Hematologic parameters and red
cell indices were determined as previously reported.16,29-32

For cytofluorimetric analysis of mouse bone-marrow precursors
and cell sorting of murine erythroblasts, the cytofluorimetric
analysis of erythroid precursors from bone marrow (BM) of both
wild-type and β-thalassemic mice was carried out as previously
described.33 Populations (pop.) II and III corresponding to
basophilic erythroblasts and polychromatic erythroblasts (1 x 106)
were sorted from BM of both mouse strains for RT-PCR and
immunoblot analysis. Red cell survival was carried out using CFSE
(10 mM; Molecular Probe, Invitrogen).4 Details are reported in the
Online Supplementary Appendix. 
Red cell ghost preparation30,36 and red cell membrane carbonyl

group determination were carried out as previously reported36

(Online Supplementary Appendix).
FOXO- PRDX2 alignment analysis is described in the Online

Supplementary Appendix, along with details of the statistical analy-
sis carried out. 

Results

Low concentration of resveratrol induces erythroid 
maturation during normal erythropoiesis 

We first evaluated the effects of different doses of
resveratrol on the production of normal erythroid cells
generated from CD34+ cells isolated from peripheral
blood. We found a dose-dependent decrease in cell pro-
duction in agreement with earlier reports that show cellu-
lar toxic effects on differentiating cells at both moderate
and high doses of resveratrol (Online Supplementary Figure
S1A).5,6,8 We thus chose to work with a low dose of resver-
atrol (5 mM) and noted that even at this dose cell prolifer-
ation was decreased as compared to untreated cells (Figure
1A). Erythroid differentiation was assessed using a combi-
nation of three surface markers: the transferrin receptor
(CD71) and Glycophorin A (GPA) and CD36,23 which
enable the identification of erythroid cells at distinct
stages of maturation (Figure 1B and Online Supplementary
Figure S1B). Resveratrol induced a reduction of CFU-E cells
but increased Int-E at Days 7 and 9 of culture (early ery-
thropoiesis) as well as Int-E and Late-E at Days 11 and 14
of culture (late erythropoiesis) (Figure 1B). The accelerated
maturation of erythroid cells induced by resveratrol was
reflected by changes in cell morphology (Figure 1B), by
increased surface expression of GPA, reduced expression
of CD71 at an earlier time compared to untreated cells
(Figure 2A), and early appearance of band 3 (Online
Supplementary Figure S1C). No differences in the extent of
cell apoptosis as monitored by the percentage of Annexin-
V positive cells (7d: untreated 3.5±0.7% vs. resveratrol
3.1±0.4%, n= 6; NS; 11d: untreated 2.25±0.1% vs. resver-
atrol 1.9±0.8%, n=6; NS; 13 d: untreated 3.5±0.7% vs.
resveratrol 3.1±0.4%, n= 6; NS; 11d: untreated 2.3±0.7%
vs. resveratrol 2.0±0.1%, n=6; NS;) or in the expression of
levels of gamma globin mRNA were noted in sorted cell
erythroid populations from cultures with and without
resveratrol (9d: HBG1 untreated 6.8±2.1 vs. resveratrol
9.3±0.9 n=6; NS; HBG2 untreated 8.2±2.1 vs. resveratrol
8.8±0.1 n=6; NS; 13d: HBG1 untreated 19.3±0.5 vs. resver-
atrol 17.2±2.7 n=6; NS; HBG2 untreated 19.7±0.6 vs.
resveratrol 19.5±0.7 n=6; NS; HBG1 and HBG2 relative
expression on GAPDH). These data imply that, while
resveratrol inhibits proliferation of erythroid progenitors,
it accelerates the terminal erythroid differentiation of
proerythroblasts into late stage orthochromatic-erythrob-
lasts.
Since we recently reported that resveratrol targets the

transcription factor, forkhead box O3a (FOxO3a),4 which
plays a key role in erythropoiesis,12 we evaluated FOxO3a
and Akt activation in sorted CFU-E cells.37,38

Resveratrol enhances the expression of FOxO3a and
inhibits Akt activity in sorted CFU-E
In sorted CFU-E cells, at Day 7 resveratrol up-regulates

FOXO3 expression without a significant change in
FOXO1 mRNA levels (Online Supplementary Figure S2A).
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Nuclear localization of FoxO3a was used as a surrogate
assay for FoxO3a activity. In sorted CFU-E cells, we found
that resveratrol increased the overall expression of FoxO3a
protein in the nucleus (Figure 2B), which was confirmed
by immunoblot analysis (Figure 2C). FoxO3a function is
modulated by Akt activity, which phosphorylates
FoxO3a, thereby sequestrating it into the cytoplasm and
blocking its transcriptional activity.12,39,40 We then evaluat-
ed Akt activity in CFU-E cells sorted in the presence and
absence of resveratrol. We found reduced phosphorylation
of Akt in resveratrol treated CFU-E obtained from cultures
at Day 7 compared to untreated cultures (Figure 2D).
These data suggest that resveratrol enhances FOxO3
expression in CFU-E, inhibits Akt and modulates the activ-
ity of FoxO3a, sustaining erythroid precursors during
accelerated erythropoiesis (Figure 2). The activation of
FoxO3a is also supported by the finding of upregulation of
catalase, a scavenging enzyme (Online Supplementary Figure
S2B), whose transcription is promoted by FoxO3a.12

Low concentration of resveratrol hampers cell 
proliferation and induces cell differentiation of human
β-thalassemic-erythroid cells in vitro
To evaluate the effect of resveratrol on disordered ery-

thropoiesis, we chose β-thalassemia as a model since its
erythroid differentiation is characterized by blocked cell

maturation, oxidative stress and ineffective erythro-
poiesis.11,15,17,41,42 CD34+ cells derived from peripheral blood
of β-thalassemia intermedia subjects were studied in vitro
(Online Supplementary Figure S3A and B). This culture sys-
tem recapitulates the ineffective erythropoiesis observed
in vivo in β-thalassemia.11,17 Resveratrol significantly
reduced cell proliferation of β-thalassemic erythroid pre-
cursors during the early phase of erythropoiesis (7d)
(Figure 3A), with a reduction in the percentage of CFU-E
cells and an increase of Int-E cells. At late stage of erythro-
poiesis (14d) there was a reduction of basophilic erythrob-
lasts (Int-E) with a concomitant increase of polychro-
matophilic- and orthochromatic-erythroblasts (late-E),
indicating a shift toward normal maturation and erythro-
poiesis (Figure 3B). The increased surface expression of
GPA and reduced expression of CD71 at an earlier time of
culture of β-thalassemic cells in the presence of resveratrol
compared to untreated cells also imply accelerated termi-
nal erythroid differentiation (Online Supplementary Figure
S3C). No changes in the gamma-globin-chain mRNA lev-
els were detected in sorted β-thalassemic cells with or
without resveratrol (data not shown).
Resveratrol significantly increased FOXO3 expression in

β-thal CFU-E cells compared to untreated β-thalassemic
cells with no effects on FOXO1 mRNA levels (Online
Supplementary Figure S4A). Since the number of cells from

Resveratrol reduces ineffective erythropoiesis
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Figure 1. Low-dose resveratrol hampers cell growth
and affects the pattern of erythroid maturation in
normal erythropoiesis. (A) Cell proliferation of ery-
throid precursors derived by in vitro liquid culture of
CD34+ cells isolated from peripheral blood of nor-
mal (control cells) subjects with or without resvera-
trol (n=10). Arrows indicate when resveratrol 5 mM
was added to the culture medium. Data are present-
ed as means± SD; *P<0.05 compared to untreated
cells. (B) (Left). Cytofluorimetric analysis of matura-
tion pattern of erythroid precursors at different
times of cell culture, 7, 9, 11, and 14 days (d) using
the following surface markers: CD36, glycophorin-A
and CD71 (see also Online Supplementary
Methods). This cyto-fluorimetric strategy allows the
identification of the following homogenous cell pop-
ulations: pro-erythroblasts (Pro-E), basophilic ery-
throblasts corresponding to intermediate erythrob-
lasts (Int-E) and polychromatic and orthochromatic
erythroblasts as late erythroblasts (Late). Data are
expressed as percentages or as absolute cell counts
and shown as means ± SD (n=10); *P< 0.05 com-
pared to untreated cells (Right) morphology of ery-
throid precursors with or without resveratrol.
Cytospins were stained with May-Grunwald-Giemsa.
Cells were imaged under oil at 100x magnification
using a Panfluor objective with 1.30 numeric aper-
ture on a Nikon Eclipse DS-5M camera and
processed with Digital Slide (DS-L1) Nikon. One rep-
resentative image from a total of 10 for each condi-
tion at the different time points is shown.
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β-thalassemic erythroid precursors is limited due to the
ineffective erythropoiesis and the effect of resveratrol on
FoxO3a that has been shown in healthy cells by immuno-
fluorescence and immunoblot analysis, we studied
FoxO3a localization by immunofluorescence on sorted β-
thalassemic CFU-E cells. We found that FoxO3a was sim-
ilarly localized in the nucleus in both treated and untreat-
ed cells, but that FoxO3 nuclear expression was increased
at 11 days of culture in resveratrol treated β-thalassemic
CFU-E cells compared to untreated cells (Figure 4A). We
confirmed the reduced activation of Akt in resveratrol
treated β-thalassemic CFU-E similar to that observed in
control CFU-Es, validating a role for resveratrol on the Akt
signaling pathway (Figure 4B). In β-thalassemic CFU-E, we
noted upregulation of catalase through FoxO3a activation
(Online Supplementary Figure S4B). Thus, resveratrol

induces erythroid differentiation by inhibiting Akt and
enhancing FoxO3 activity in normal and disordered ery-
thropoiesis, suggesting a potential role for resveratrol in
reducing ineffective erythropoiesis in β-thalassemia by
upregulation of the anti-oxidant gene as catalase.

Resveratrol decreases ineffective erythropoiesis and
anemia in a in vivo mouse model of β-thalassemia
To evaluate the impact of resveratrol treatment in vivo,

we used β-thalassemic mice (Hbbth3/+), a model which
resembles in severity human β-thalassemia intermedia. In
resveratrol treated β-thalassemic mice, we observed sig-
nificant increases in hematocrit, hemoglobin levels, MCV
and MCH, which were associated with a significant
decrease in reticulocyte count (Table 1) and a decrease in
total bilirubin (WT 0.15±0.04 vs. resveratrol 0.2±0.06 n=6;

S. Santos Franco et al.
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Figure 2. Low-dose resveratrol induces early erythroid maturation, activates FOxO3a and inhibits Akt pathway (A) (Upper panel). Flow cytometric
analysis of expression of transmembrane glycophorin-A (GPA) and CD71 during erythropoiesis at days (d) 7, 9, 11, and 14 of culture with or without
resveratrol. Note the early appearance of GPA and the early reduction of CD71 in resveratrol-treated cells compared to untreated cells. One repre-
sentative image from a total of 10 for each condition at the different time points is shown. Lower panel. Kinetic of GPA appearance and reduction
of CD71 in resveratrol treated cells compared to untreated ones. Data are presented as means ± SD (n=10); *P< 0.05 compared to untreated cells.
(B) FoxO3 immunostaining of CFU-E cells at Day 7 (7d) of culture with or without resveratrol. Cells were FACS-sorted, cytospun onto glass slides and
immunostained with anti-FoxO3a antibody and counterstained with DAPI. The mean fluorescence was measured in the nucleus of 30 cells using
Image J software. *P<0.05 compared to untreated cells (n=6). (C) Immunoblot analysis of FoxO3a on nucleus of sorted CFU-E at Day 7 of culture.
Histone-H3 was used as loading control. One representative gel from the other 6 with similar results is presented. (Right). Relative quantification
of immunoreactivity of FoxO3 and Histone- H3 in sorted CFU-E cells. Data are presented as FoxO3/Histone-H3 ratio and shown as means ±SD (n=6).
*P<0.05 compared to untreated cells. (D) Western-blot (Wb) analysis of phospho-Akt (p-Akt) and Akt in sorted CFU-E cells at Day 7 of culture with
resveratrol (Resv) or without (control, C). Tubulin was used as protein loading control. One representative gel from the other 6 with similar results
is presented. /Right). Relative quantification of immunoreactivity of phospho-Akt (p-Akt), Akt and tubulin in sorted CFU-E cells. Data are presented
as p-Akt/tubulin or Akt/tubulin ratio and shown as means ±SD (n=6); *P<0.05 compared to untreated cells.
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Hbbth3/+ 0.7±0.1 vs. resveratrol 0.2±0.01 mg/dL; n=6
P<0.05). β-thalassemic mice treated with resveratrol
exhibited a significant reduction in spleen size, a sign of
extramedullar erythropoiesis (Online Supplementary Figure
S5A). Erythroid precursors were evaluated by flow cyto-
metric analysis using the specific markers CD44 and
TER119 (Online Supplementary Figure S5B).33 In the BM of
resveratrol-treated wild-type mice, we observed a
decrease in polychromatic-erythroblasts (pop. III) and a
decrease in orthochromatic-erythroblasts compared to
untreated wild-type mice (pop. IV; Figure 5A and Online
Supplementary Figure S5C). In the BM of β-thalassemic
mice, resveratrol induced a decrease in basophilic ery-
throblasts (pop. II) and an increase in orthochromatic ery-
throblasts (pop. IV; Figure 5A and Online Supplementary
Figure S5C) suggesting that resveratrol decreases the
extent of ineffective erythropoiesis of β-thalassemic mice.

Resveratrol sustains in vivo β-thalassemic 
erythropoiesis by up-regulating foxo3 and 
peroxiredoxin-2
In sorted basophilic erythroblasts as seen with human

cells in vitro Foxo3 expression was increased in both con-
trol and β-thalassemic mice treated with resveratrol
(Figure 5B). In sorted basophilic- and polychromatic-ery-
throblasts we found upregulation of catalase (Cat) in both
mouse strains supplemented with resveratrol similarly to
that observed in cultured human cells (Online
Supplementary Figure S5D). Among the scavenging
enzymes with cytoprotective function, we have recently
reported that peroxiredoxin-2 (Prdx2) plays a crucial role
in β-thalassemic red cells and proposed a role of Prdx2 in
erythropoiesis.30,35 Upregulation of both Foxo3 and Prdx2
have been recently described in Drosophila neuronal cells
and in mammalian cell lines exposed to oxidative

stress.43,44 By analyzing nucleotide sequences of Prdx2 and
Foxo DNA binding motifs, we found a conserved FOXO
binding site in the core promoter region (-15 to -8 bp) of
Prdx2. We then evaluated Prdx2 expression in sorted
basophilic erythroblasts and polychromatic erythroblasts
and found upregulation of Prdx2 in basophilic erythrob-
lasts from wild-type mice and in polychromatic erythrob-
lasts in both mouse groups treated with resveratrol (Figure
5B). The immunoblot analysis of Prdx2 in sorted polychro-
matic erythroblasts confirmed the upregulation of Prdx2
in resveratrol treated mice (Figure 5C). These data suggest
that Foxo3a might promote Prdx2 transcription. 

Resveratrol improves red cell survival and decreases
red cell membrane oxidative damage in β-thalassemic
mice
Resveratrol treatment resulted in significant hematolog-

ic changes in β-thalassemic mice (Table 1). Hct and Hb lev-
els increased significantly along with increased MCV and
MCH, while the reticulocyte count and total bilirubin sig-
nificantly decreased. In resveratrol-treated β-thalassemic
mice, red cell morphology ameliorated (Figure 6A) and
erythrocyte survival studies showed a significant improve-
ment, whereas no significant changes were noted in treat-
ed wild-type mice (Figure 6B). We also evaluated the
extent of red cell membrane oxidative damage by quanti-
fying carbonyl groups present on red cell membrane. At
baseline, markedly increased membrane oxidant damage
was noted in β-thalassemic mouse red cells compared to
wild-type red cells (Figure 6C).18,30,45 Resveratrol supple-
mentation significantly reduced carbonyl groups in the red
cell membrane of β-thalassemic mice compared to
untreated β-thalassemic mice (Figure 6C). No differences
were noted between red cells from untreated and treated
wild-type mice (Figure 6C). 

Resveratrol reduces ineffective erythropoiesis
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Figure 3. β-thalassemic erythropoiesis is affected by
low-dose resveratrol, which induces early erythroid
maturation. (A) Cell proliferation of β-thalassemic (b-
thal) erythroid precursors derived by in vitro liquid cul-
ture of CD34+ cells isolated from peripheral blood of β-
thalassemic (b-thal) subjects with or without resvera-
trol (Resv) (n=10). Arrows indicated when resveratrol
5 mM was added to the culture medium. Data are pre-
sented as means± SD; *P<0.05 compared to untreat-
ed β-thalassemic cells. (B) Cytofluorimetric analysis of maturation pattern of β-thalassemic erythroid precursors at different times of cell culture,
7, and 14 days (d), using the following surface markers: CD36, glycophorin-A and CD71(23) (Online Supplementary Appendix). This cytofluorimetric
strategy allows the identification of the following homogenous cell populations: pro-erythroblasts (Pro-E), basophilic erythroblasts corresponding to
intermediate erythroblasts (Int-E) and polychromatic and orthochromatic erythroblasts as late erythroblasts (Late E). Data are expressed as per-
centages or as absolute cell counts and shown as means ± SD (n=10); *P< 0.05 compared to untreated β-thalassemic cells. (Right) morphology
of β-thalassemic (b-thal) erythroid precursors with or without resveratrol (Resv). Cytospins were stained with May-Grunwald-Giemsa. Cells were
imaged under oil at 100x magnification using a Panfluor objective with 1.30 numeric aperture on a Nikon Eclipse DS-5M camera and processed
with Digital Slide (DS-L1) Nikon. One representative image of the other 10 for each condition at the different time points is shown.
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Since we previously showed that Prdx2 membrane
association in β-thalassemic red cell is reduced, we evalu-
ated the Prdx2 membrane binding in red cells from resver-
atrol-treated mice. The amount of Prdx2 associated with
the membrane was significantly increased in β-tha-
lassemic mouse red cells (Figure 6D) suggesting that
resveratrol increases red cell lifespan in association with a
decrease in red cell membrane oxidant damage in β-tha-
lassemic mice, which in combination with beneficial
effects on ineffective erythropoiesis, reduces the severity
of anemia in murine β-thalassemia. 

Discussion

We show that low-dose resveratrol induces early matu-
ration of normal erythroid precursors by activation of the
FoxO3a transcriptional factor, inhibition of Akt and upreg-
ulation of antioxidant response genes such as catalase. The
effects of resveratrol on cell maturation are highly depend-
ent on resveratrol concentration and on cell types.1,5-8 The
findings from previous studies are not directly applicable
to ours due to either the use of erythroid leukemia cell
lines or study of primary erythroid cells without detailed
characterization of their stage of cell differentiation.5-7
Here, we observed that CFU-E cells are the most suscepti-
ble erythroid cell population to the effects of low dose
resveratrol (Figures 1 and 2). Since resveratrol has no effect

on the expression of erythropoietin receptors during ery-
throid differentiation,8 we propose that resveratrol might
hamper cell proliferation and induce cell maturation as
supported by the early expression of GPA and band 3 in
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Figure 4 β-thalassemic sorted CFU-E from cells cultured with low dose
resveratrol results in the upregulation and activation of FoxO3a and
inhibition of Akt. (A) FoxO3 immunostaining of β-thalassemic CFU-E
cells at Days 7 (7d) and 11 (11d) of culture with and without resveratrol.
Cells are FACS-sorted, cytospun onto glass slides, and immunostained
with anti-FoxO3a antibody and counterstained with DAPI. (Right panel).
The mean fluorescence was measured in the nucleus of 30 cells using
Image J software. Data are presented as means ±SD; *P<0.05 com-
pared to untreated cells (n=5). (B) Western-blot (Wb) analysis of phos-
pho-Akt (p-Akt) and Akt in sorted β-thalassemic CFU-E cells at Days 7
and 11 of culture with resveratrol (Resv) or without (control, C). Tubulin
was used as protein loading control. One representative gel from the
other 6 with similar results is presented. (Right panel). Relative quan-
tification of immunoreactivity of phospho-Akt (p-Akt), Akt and tubulin in
sorted CFU-E cells. Data are presented as p-Akt/tubulin or Akt/tubulin
ratio and shown as means ±SD (n=6). *P<0.05 compared to untreated
cells.

A

B

Table 1. Effect of resveratrol on hematologic parameters and red cell
index in β thalassemic (hbb3th/+) mice.

WT mice Hbb3th/+ mice
Untreated Resveratrol Untreated Resveratrol

n=12 n=12 n=14 n=12

Hct (%) 46.9±0.7 46.7±0.8 28.8±0.7° 31.3±0.4*
Hb (g/dL) 14.1±0.1 14.9±0.4 8.3±0.6° 10.3±0.5*
MCV (fL) 49.9±1.1 49.0±2.9 34.6±0.6° 41.6±5.4*
MCH (pg/cell) 16.2±0.4 15.8±1.0 9.7±0.06° 12.8±2.1*
CH (%) 13.7±0.4 13.1±0.6 9.7±0.2° 11.4±2.0
RDW (%) 12.9±0.5 14.9±0.8 33.9±0.8° 23.7±8.2*
Retics (%) 4.95±0.8 5.46±0.5 28.3±4.9° 12.1±6.0*
MCVr (fL) 57.2±1.2 52.5±2.7* 44.0±1.4° 49.1±5.0*
CHr (pg/cell) 15.5±0.3 14.3±0.2 11.9±0.4° 13.5±2.3*

Hct: hematocrit; Hb: hemoglobin; MCV: mean corpuscular volume; MCH: mean corpus-
cular hemoglobin; CH:  hemoglobin concentration; RDW: red cell distribution width;
Retics: reticulocytes; MCVr: mean corpuscular volume reticulocytes; CHr: reticulocyte
hemoglobin concentration; *:P< 0.05 compared to untreated mice; °P<0.05 compared
to wild-type mice.
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resveratrol-treated cells and by similar observations in
other cell models.7,22 We recently showed that resveratrol
targets FoxO3 a key transcriptional factor in erythro-
poiesis involved in upregulation of scavenging enzymes.4,12
We explored the possibility of resveratrol playing a pivotal
role as an exogenous anti-oxidant agent and as a modula-
tor of endogenous anti-oxidant systems. In resveratrol-
treated CFU-E, FoxO3 was up-regulated and became pre-
dominantly localized in the nucleus, suggesting an effect
of resveratrol on FoxO3a activation. This is also supported
by the resveratrol inhibition of Akt, which regulates
FoxO3a translocation to the nucleus.12,13 The resveratrol-
induced FoxO3a activation results in upregulation of
antioxidant response genes such as catalase which pro-
tects erythroid cells from the cellular stress associated
with accelerated erythroid maturation. We hypothesized
that these effects of resveratrol might be relevant in disor-
dered erythropoiesis as seen in β-thalassemia that is char-
acterized by ineffective erythropoiesis and oxidative
stress. Previous studies have evaluated the impact of dif-
ferent anti-oxidant molecules on anemia of β-thalassemia,

but only a few of them have been shown to ameliorate β-
thalassemic ineffective erythropoiesis.16,21,46 In resveratrol-
treated β-thalassemic erythroid precursors, we once again
observed a reduction of CFU-E cells with an increase in
Int-Es (Figure 3B), suggesting that resveratrol accelerates β-
thalassemic cell maturation through the same mechanism
found in normal erythroid precursors and sustains β-tha-
lassemic erythropoiesis by upregulation of anti-oxidant
response systems such as catalase (Online Supplementary
Figure S4B). We, therefore, carried out in vivo studies using
a murine β-thalassemic model to determine whether
resveratrol administration could modify in vivo β-tha-
lassemic anemia. In β-thalassemic mice, resveratrol
decreased ineffective erythropoiesis seen by the reduction
in spleen size and normalization of the pattern of β-tha-
lassemic mouse erythroid differentiation. Interestingly,
similar results on ineffective erythropoiesis were also
obtained in the same β-thalassemic mouse model treated
with Jak2 inhibitor.42 Although resveratrol has been
described as not affecting the EPO pathway in normal ery-
throid precursors,8 we cannot exclude a possible effect of
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Figure 5 In vivo supplementation with resveratrol ameliorates β-thalassemic ineffective erythro-
poiesis, up-regulates Foxo3 and peroxiredoxin-2 (Prdx2). (A) Cytofluorimetric analysis of matura-
tion pattern of wild-type (wt) and β-thalassemic (b-thal) erythroid precursors from the bone mar-
row of mice with or without resveratrol supplementation using the following surface markers:
CD44 and TER119 (Online Supplementary Appendix and Figure S5B). This cytofluorimetric strat-
egy allows the identification of the following homogenous cell populations: population I corre-
sponding to pro-erythroblasts, population II corresponding to basophilic erythroblasts, population
III corresponding to polychromatic erythroblasts and population IV corresponding to orthochro-
matic erythroblsts. Data presented as means ± SD (absolute cell counts are shown in Online
Supplementary Figure S5C) (n=10); *P<0.05 compared to untreated mice. (B) (Left): RT-PCR
expression of Foxo3 and peroxiredoxin-2 (Prdx2) on sorted basophilic erythroblasts from bone
marrow of mice with or without resveratrol (Resv) supplementation. Sorted basophilic erythrob-
lasts and polychromatic erythroblasts from 10 different mice from each mouse group were ana-
lyzed. Experiments were performed in triplicate. Error bars represent standard deviations (mean
± SD; *P<0.05 compared to untreated mice, n=10). (Right): RT-PCR expression of peroxiredoxin-

2 (Prdx2) on sorted polychromatic erythroblasts from bone marrow of mice with or without resveratrol (Resv) supplementation. Sorted polychro-
matic erythroblasts from 10 different mice from each group were analyzed. Experiments were performed in triplicate. Error bars represent the stan-
dard deviations (mean ± SD; *P<0.05 compared to untreated mice; n=10). (D) Immunoblot analysis of PRDX2 in sorted basophilic and polychro-
matic erythroblasts of wild-type (wt) and β-thalassemic (b-thal) mice with or without resveratrol (Resv) supplementation. Band 3 was used as load-
ing control. One representative experiment of 4 others with similar results. (Right): relative quantification of immunoreactivity of peroxiredoxin-2
(Prdx2) and band 3 in sorted polychromatic erythroblasts of wild-type (wt) and β-thalassemic (b-thal) mice with or without resveratrol (Resv) sup-
plementation. Data expressed as Prdx2/band 3 ratio and presented as means ±SD (n=5); *P<0.05 compared to untreated mice.
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resveratrol on the up-regulated Jak2 pathway in β-tha-
lassemic erythroid precursors.42
The beneficial effects of resveratrol on the β-thalassemic

hematologic phenotype was also supported by ameliora-
tion of red cell morphology, increased red cell survival,
decreased anemia as reflected by increased hemoglobin
values with reduced reticulocytosis and decreased levels
of total bilirubin, a marker of hemolysis. The effect of
resveratrol on mature red cells is supported by the reduc-
tion in the extent of red cell membrane oxidative damage
and the increased membrane association of Prdx2.1,2,16,47
The in vivo studies confirmed our findings from the in

vitro model: resveratrol favored cell maturation and upreg-
ulation of FOxO3a in sorted basophilic erythroblasts. We
found that catalase and Prdx2 are also up-regulated in this
erythroid population in wild-type mice and in polychro-
matic erythroblasts from both mouse models. This sug-
gests that Prdx2 might be an additional scavenging
enzyme whose expression may be induced by FoxO3a as
supported by the presence of a FOXO consensus binding
site in the promoter region of Prdx2. Thus, resveratrol may
confer resistance to oxidative stress in β-thalassemic ery-
thropoiesis and thereby reduce the extent of ineffective
erythropoiesis of β-thalassemia. The dose of resveratrol
chosen for the in vivo mouse β-thalassemic study had a

resveratrol plasma concentration of 2.6 mM; close to that
obtained in human subjects treated with 25 mg resvera-
trol.26-28 Since resveratrol bioavailability is similar in
rodents and humans, our study suggests that this polyphe-
nol might be considered a new possible complementary
tool in the treatment of anemia of β-thalassemia given its
dual role through a novel mechanism by promoting termi-
nal erythroid differentiation with activation of FoxO3a
and the upregulation of anti-oxidant systems as catalase
and Prdx2. In addition, by clarifying the FoxO3a signaling
pathways affected by resveratrol in β-thalassemia, we
identified novel opportunities for targeted pharmacologi-
cal interventions with compound others than resveratrol
such as specific FoxO3 activators.4
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Figure 6. In vivo supplementation with resveratrol
ameliorates red cell morphology, increases red
cell lifespan and reduces red cell membrane
oxidative damage in β-thalassemic mice. (A)
Morphology of red cells from wild-type (wt) and β-
thalassemic (b-thal) mice with or without resvera-
trol supplementation. Cells were stained with
May-Grunwald-Giemsa. Cells were imaged under
oil at 100x magnification using a Panfluor objec-
tive with 1.30 numeric aperture on a Nikon
Eclipse DS-5M camera and processed with Digital

Slide (DS-L1) Nikon. We show one representative image from a total of 12 for each condition. (B) Red cell survival (see also Methods) of CFSE
labeled red cells from wild-type (wt) and β-thalassemic (b-thal) mice with or without resveratrol (Resv) supplementation. Data presented as means
± SD (n=4) from each mouse group; *P<0.05 compared to untreated mice. (C) Percentage of carbonyl groups from red cell membranes from wild-
type (wt) and β-thalassemic (b-thal) mice with or without resveratrol (Resv) supplementation. Data are presented as means ± SD (n= 6) from each
group; *P<0.05 compared to untreated mice; °P<0.05 compared to wild-type mice. (D) Peroxiredoxin-2 (Prdx2) membrane association in wild-type
(wt) and β-thalassemic (b-thal) mice with or without resveratrol (Resv) supplementation. Actin was used as loading control protein. (Right): relative
quantification of immunoreactivity of peroxiredoxin-2 (Prdx2) and actin in red cell membrane from wild-type (wt) and β-thalassemic (b-thal) mice
with or without resveratrol (Resv) supplementation. Data are presented as means ±SD (n=6); *P<0.05 compared to untreated mice.
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