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Abstract. Symmetry and self-affinity or scale invariance are related concepts. We explore the
fractal properties of fluctuations in dynamical systems, using some of the available tools in the
context of time series analysis. We carry out a power spectrum study in the Fourier domain,
the method of detrended fluctuation analysis and the investigation of autocorrelation function
behavior. Our study focuses on two particular examples, the logistic module-1 map, which
displays properties of classical dynamical systems, and the excitation spectrum of a schematic
shell-model Hamiltonian, which is a simple system exhibiting quantum chaos.

1. Introduction

The concept of symmetry is closely related to self-similarity. In a broad sense symmetry implies
that a system under the action of some transformation remains invariant, i.e, the system remains
similar (or identical) to itself. The concept of self-similarity in a more mathematical sense is
related with a special case of transformation, the re-scaling of the system. A self-similar object
is statistically (or exactly) similar to a part of itself, which in turn remains similar to a smaller
part of itself, and so on. Fractals are systems which present such self-similar behavior and the
examples in nature are many.

Coastlines and natural frontiers have been found to be fractal. A coastline is scale invariant,
if it looks self-similar at any scale and does not have a characteristic length. Specifically, the
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length of a coastline L is a function of the length of the measuring rod l and follows a power law

of the form[1, 2],
L = l1−D, (1)

where D is the fractal dimension. A coastline with D = 1 would appear straight in the map,
whereas a coastline with D = 2 would consist of an infinite self-similar sequence of bays within
bays without upper or lower limits. Natural coastlines have a fractal dimension 1 < D < 2.

We are interested in using the self-similarity of a dynamical system in order to study some
of its properties. A dynamical system [3] can be any real or hypothetical system that evolves
over time. Its mathematical description consists of a state vector (a set of real numbers) that
describes the system’s state in phase space, and a function or rule that governs in a deterministic
way the evolution of the state vector in time. Many dynamical systems are composite systems,
and consist of locally interacting parts. A complex system [4] is a special type of dynamical
composite system, where under critical circumstances new collective behavior emerges from the
short-range interactions between the constituent parts.

It is not always possible to fully determine all the components of the state vector of the
dynamical system. However, an elegant way to study a large variety of dynamical systems is
through the use of time series, that follow the evolution of a specific observable as a sequence of
data points, typically measured at successive times spaced at uniform time intervals. Not only
do time series offer valuable information on the internal dynamics of the systems that produce
them, but have the additional advantage that the same theoretical methods can be used to
analyze time series of very different systems. In this contribution we study time series associ-
ated with both classical and quantum systems, although in the latter case we shall actually use
energy instead of time, as we explain below. Time series can be fractal, if segments of it remain
self-similar at different time scales. An interesting example is provided by the heartbeat interval
series, that remains self-similar for time scales ranging from 10 seconds up to several hours [5, 6].

If the time series is fractal, then the power spectrum S(f) must also be scale invariant and
behave as a power law,

S(f) ∼ fβ , (2)

where β is the spectral density exponent, with β = 0 for white noise and β < 0 for reddened noise.
In a log-log representation, the power law translates into a straight line, with β as the slope.
Such broadband power spectra, without a characteristic frequency, have indeed been observed
for time series of a wide variety of dynamical systems, including the interval fluctuations of a
healthy heart [7].

The spectral density exponent β is a measure of the amount of correlations present in the
time series. There is no correlation for white noise (β = 0) and a large one for brownian noise
(β = −2). The power-law behaviour of the power spectrum P (f) ∼ fβ of eq. (2) implies that
the power spectrum of fβ noises is scale invariant. In white noise (β = 0), if one integrates
the power of the power spectrum per frequency decade, then one finds that the contribution
increases a factor ten per decade. White noise is convergent at small frequencies but diverges
at higher frequencies. This translates into the fact that the mean value of a specific white-noise
time-series converges as the value is averaged over longer and longer time intervals, but its in-
stantaneous value is undefined. On the other hand, in brownian noise (β = −2), the power
contribution decreases a factor of ten per decade. Brownian noise is convergent at higher fre-
quencies but diverges at lower frequencies. A specific brownian time series is thus well defined
at every single time, but it does not have a well defined mean value for large time intervals, as
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the random-walk function wanders farther and farther away from the initial value. In the power
spectrum of 1/f noise, every frequency decade contributes with exactly the same amount of
power (proportional to log10) [8, 9], a perfect scaling property that we already recognized in the
time scaling of the autocorrelation function, see eq. (6). 1/f noise thus constitutes a “golden
mean”, in between white noise and brownian noise. The spectrum is divergent both towards low
and high frequencies, and as a consequence a specific 1/f time series does not have a well-defined
long-term mean nor a well-defined value at a single point. However, as the divergence is slow
(logarithmic), frequency cutoffs can be applied to the power spectrum at low or high frequencies,
without the time series changing its appearance [10].

In a sense, 1/f noise can be seen as the fingerprint of a system that has maximized its effi-

ciency within its own limits. This statement is based on the assumption that a biological system
operates so as to maximize its efficiency [9, 11], and on the empirical observation that many
(if not all) biological time series that correspond to involuntary or autonomous signals display
1/f behavior when they are healthy. In contrast, with age, disease or bad habits a deviation
from 1/f is observed towards either more random or more regular regimes. Health in biological
systems is thought to function in a critical regime, characterized by 1/f signals.

It can be shown that the autocorrelation function C(τ) of these systems must also be scale
invariant. This can be understood in the following way. According to the Wiener-Khinchin
theorem, the autocorrelation function is the inverse Fourier transform of the power spectrum,

C(τ) = F−1 (S(f)) . (3)

If the power spectrum obeys the power law of eq. (2), and we apply a scale transformation in
the time domain, τ → τ ′ = aτ , then,

C(aτ) = F−1

(

1

a
S(

f

a
)

)

= a−β−1 F−1
(

fβ
)

= a−β−1 C(τ), (4)

and thus the autocorrelation function conserves its behavior after time transformations (up to a
scaling factor a−β−1). The general solution of this equation is that the autocorrelation function
C(τ) itself is also a power law. White noise (β = 0) is a particular case, where

C(aτ) =
1

a
C(τ), (5)

so that the autocorrelation function for white noise is a delta function, C(τ) = δ(τ), since delta
functions obey the scaling law δ(aτ) = |a|−1δ(τ). Flicker noise or 1/f noise (β = −1) is another
particular case, where

C(aτ) = C(τ), (6)

with solutions C(τ) =constant, or the physically more significant case C(τ) = − log(τ). Rescal-
ing a logarithmic function gives log(aτ) = log(τ) + log(a), where log(a) is a constant that does
not contribute to the time evolution of the autocorrelation function, so that the scaling relation
of eq. (6) is approximatively satisfied, C(aτ) ∼= C(τ).

For discrete time series, apart from spectral analysis, there are other tools to study scale
transformations, including the Detrended Fluctuations Analysis (DFA) method [12]. The DFA
method is used to estimate long-range power-law correlation exponents in diverse kinds of
signals [13]. In order to apply the DFA the time series is integrated and then divided into
nonoverlaping N/l boxes of equal length containing l data points. Then a local trend is defined
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for each box, i.e. a linear fit to the integrated time series. Then the variance between the
integrated time series and the local fit is computed for each box and averaged over all the boxes
of size l. The average variance F (l) depends on the box size. The analysis of this dependence
allows to study the scaling properties of the system and the presence of long-range correlations.
A linear relationship between Log(F (l)) and Log(l) will indicate a scaling behavior. The slope
αDFA in the Log(F (l)) vs Log(l) plot characterizes the scaling properties of the time series
because it reflects a power law of the form F (l) ∼ lαDFA . In the case of a regular uncorrelated
system the theoretical value of the slope is αDFA = 1/2. The parameter αDFA, obtained by
means of the DFA, which in this case is related to the self-similarity properties, can be related
with the exponent β of the spectral analysis through the simple relation

β = 2αDFA − 1, (7)

valid in the range 0.5 < αDFA < 1.0. The relationship between the exponent of the
autocorrelation function γ and αDFA is given by γ = 2 − 2αDFA [14]. In particular, for time
series with 1/f -noise (β = 1), αDFA = 1 and γ → 0 (see e.g. [15]).

2. Module-1 Logistic Map

The logistic map, xn+1 = kxn(1 − xn), is a map of the unit interval [0,1] onto itself, which
produces time series that are periodic or chaotic depending on the value of the control parameter
k ∈ theinterval[0, 4] [16]. Complex behavior, such as 1/f , can only be expected at the edge

of chaos at the borderline between two different regimes [17]. The mod-1 map, also called
the Manneville iteration map, xn+1 = xn + kx2

n(Mod1), on the other hand, produces self-
affine time series and has been used as a model for intermittency (see Fig. 1). Moreover,
the time series exhibit 1/f power spectral density for many values of its control parameter k
[18, 19, 20, 21]. Both discrete maps belong to the class of discrete-time dynamical deterministic
systems, corresponding to one-dimensional maps of a given interval, which are perhaps the
simplest models displaying a sensitive dependence on initial data. We construct a new map, the
mod-1 logistic map,

xn+1 = k(xn + x2
n)(mod 1), (8)

where the dynamic behavior of the resulting time series depends on the value of the control
parameter k. We focus on the behavior of the time series close to a particular point, where
the system undergoes a sudden order to chaos transition for a minimal change of the control
parameter. We study the dependence on initial conditions by repeated iteration of the map,
Eq. (8), which yields a sequence where the value xn+1 at step n + 1 depends explicitly only
on the value xn of the previous step n, and maps the [0, 1] interval onto itself. The changes in
long-range correlations of the time series with this map are analyzed as the control parameter k
is varied with steps of 0.0125. In the following, we consider ensembles for different values of k,
with 10 different initial conditions and time series of length 3000. We present below the results
for each ensemble. For k < 1, the time series xn is a monotonic decreasing function that te nds
to zero after a few hundred iterations. For k = 1, the map corresponds to the original mod-1
map and the time series is thus self-affine and intermittent. For k > 1, the time series loses its
intermittent behavior for increasing k. To quantify regular and chaotic behaviour, we calculate
an estimated value for the Lyapunov exponent λ for the xn(k) time series as a function of k,

λ(k) = lim
m→∞

1

m

m−1
∑

n=0

log
∣

∣x′

n+1(k)
∣

∣ , (9)

where x′

n+1 = k(1+2xn) is the derivative of xn+1 of Eq. (8) with respect to the previous value xn.
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Figure 1: The self-affine time series of the Module-1 Logistic Map of eq. (8) with k = 1, consists
of bunches of peaks (upper panel) that contain additional bunches on a smaller scale (bottom
panel).

We obtain λ < 0 for k < 1, which confirms that the corresponding time series xn(k) are
regular, whereas λ(k) > 0 for k > 1 indicates that the corresponding time series xn(k) are
increasingly chaotic for larger k. The edge of chaos, λk = 0, is obtained for k = 1. We now
study the evolution of the correlation strength of the time series xn(k) as a function of the
control parameter, using spectral analysis and the DFA method, with the exponent β of Eq. (2)
and β = 2αDFA − 1 of Eq. (7), respectively. For k 6= 1 (k > 1), the power spectral density
flattens out at the smallest frequencies, and this flat part tends to be larger as k moves further
away from 1, indicating that a portion of the large-range correlations are lost. We then study
the part of the spectral density where the correlations are conserved. The spectral analysis and
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the DFA give comparable results, see Fig. 2. We point out that before k acquires the value
one, it does not make sense to fit the power spectral density for a periodic regime. On the
other hand, for the chaotic time series k > 1, the non-flat part of the spectral density at higher
frequencies loses gradually its correlation strength, β → 0, (white-noise like) for larger k. At
the edge of chaos, for k = 1, a 1/f behavior (β = 1) is observed that extends through the whole
range of the frequencies. In conclusion, the transitional point k = 1 in this simple classical
system in between regularity and chaos is characterized by long-range correlations of the 1/f
type, whereas its limiting regimes are characterized by strong and weak correlation strengths,
respectively, but with a shorter range.
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Figure 2: The correlation strength β of time series xn(k) as a function of k in the map of Eq. (8).
The line connecting the blue dots is the spectral density exponent β (in the figure as βPS) from
Eq. (2), whereas the line connecting the red squares is β = 2αDFA − 1 ( in the figure as βDFA)
from Eq. (7).

3. Quantum excitation spectra as a time series

3.1. Unfolding and fluctuations in the quantum spectra

Quantum chaos studies the correlations present in the excitation spectra of quantum systems,
which correspond to a monotonic series of levels at increasing energies, E1, E2, E3, . . .. In this
case we analyse their fluctuations with respect to an equidistant (harmonic oscillator) energy
spectrum. The procedure used to extract the information of the fluctuating part of the quantum
spectrum is called unfolding : the global features of the energy level density are usually modeled
by a smooth function, which is subtracted from the total level density to leave only the oscillating
part. The unfolding is a delicate procedure [22, 23]. The level density is usually approximated by
a smooth function (e.g. polynomial function) which can, however, affect the results, especially
the sensitive long-range correlations [24]. Instead of following this procedure, in this paper we
employ the Empirical Mode Decomposition (EMD) method to perform the unfolding procedure
in quantum excitation spectra. This method originated in the theory of signal analysis, where
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the determination of the trend and the corresponding detrending is a fundamental task. Follow-
ing [25] we use a simple definition of the global trend for arbitrary nonlinear and non-stationary
time series. One of the important properties of the method is its adaptability to a given time
series. It can reveal natural time scales of the signal and is able to extract various trends at
different time scales [25]. In this sense the EMD method interprets the trend as an integral part
of the data, i.e. it is driven by the same mechanisms that give rise to the rest of the signal. Our
unfolding procedure combines a small degree polynomial fit (fifth-order) to remove the basic
trend of the data around their average, followed by t he empirical mode decomposition, which
subtracts the rest of the trend in a very accurate way. We have found that these procedure is
independent of the degree of the original polynomial. A detailed analysis of the EMD method
to determine the fluctuations in the quantum spectra has been recently published [26].

The fluctuations in the quantum spectra can be formally interpreted as a discrete time
series [22] by using the quantity

δn =
n

∑

i=1

(si − 〈s〉) = [ǫn+1 − ǫ1] − n〈s〉 , (10)

where si = ǫi+1 − ǫi. The stochastic discrete function δn measures the deviations of the distance
between the (n + 1)-th unfolded state, with respect to the corresponding state in a uniform
(equally spaced) sequence.

3.2. Energy fluctuations in shell model nuclear calculations

Following Relaño et al. [22], we use a spectral analysis to study the long-range correlations. We
also apply the DFA method to the quantum spectral fluctuations, in a way similar to that of
reference [27]. We performed calculations for large-scale shell-model calculations with realistic
interactions (KB3) [28] in the full fp shell for 48Ca in the subspaces Jπ = 0+, 1+, . . . , 8+ by means
of the ANTOINE code [29]. In the present study we repeated the DFA and spectral analysis
of the time series, but using the EMD procedure to improve the unfolding. We obtained a
nearly 1/f power-law behavior, that is confirmed by results with αDFA = 1 for the DFA, the
largest deviation being of ∼ 10% (see Table 1). These results are in agreement with the ones
of Relaño et al. and our previous results [24]. We also studied the energy fluctuations of the
two-body random-ensemble (TBRE) [30, 31] shell-model calculations for 48Ca in the subspace
Jπ = 0+. We found β = 1.01 and αDFA = 1.02. This value is very similar to the case of
realistic calculations that is shown in Table 1. Relaño et al. [22] performed the first study of the
behavior of the power spectral density of the energy fluctuations of TBRE random shell-model
calculations for 24Mg and 32Na and found that they obey a 1/f scaling.

3.3. Energy fluctuations in a phase-transitional model

Large-scale shell-model calculations and TBRE calculations carried out to describe real nuclei
are found to produce 1/f time series, but these calculations are very complicated and involve
many degrees of freedom. In this section, we use a schematic Hamiltonian in a simplified version
of the shell model, with which we can follow a transition in-between different regimes, in order
to study how the power spectral density evolves, with particular emphasis on what happens at
the transitional point.

We use the Hamiltonian
H = H0 + χQ̂ · Q̂ , (11)
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Table 1: Self-similarity parameter αDFA obtained using a linear DFA method, and the β exponent

in the power spectral density of the energy fluctuations in the shell-model calculations of 48Ca
with realistic interactions in different subspaces Jπ. The dimension N of each subspace is also
shown. The unfolding was done using the EMD method.

48Ca

0+ 1.03 1.09 347
1+ 0.99 1.10 880
2+ 1.02 1.03 1390
3+ 1.04 1.13 1627
4+ 1.01 1.09 1755
5+ 1.10 1.13 1617
6+ 1.06 1.08 1426
7+ 1.03 1.05 1095
8+ 1.05 1.07 808

with an external adjustable parameter χ. This schematic Hamiltonian is analogous to simple
boson Hamiltonians used recently to study quantum phase transitions [32]. The unperturbed
single-particle (s.p.) Hamiltonian H0 describes non-interacting fermions in the mean field of

an appropriate spherical core which is known to be integrable [33]. The second term, χQ̂ · Q̂,
describes a residual quadrupole-quadrupole two-body interaction, which in this case acts on 8
valence neutrons in the fp shell, and this part by itself is also integrable. We carry out calcu-
lations in the subspace Jπ = 3+ of 48Ca. The coefficient χ in Eq. (11) modulates the intensity
of the quadrupole-quadrupole interaction and gives rise to the level repulsion in the nuclear
spectrum. Varying the intensity of this control parameter in the range 0.01 < χ < 0.40, we find
that the power spectral density of the δn time s eries behaves as P (f) ∼ 1/fβ with β=1.92 (for
χ = 0.01), β = 1.10 (for χ = 0.21) and β = 1.43 (for χ = 0.40), values that are confirmed by an
analysis with DFA, see Fig. 3.

The fluctuations in the quantum spectra with the realistic KB3 interaction are in good
agreement with the spectral fluctuations obtained with the schematic Hamiltonian when the
intensity parameter χ takes values close to 0.21. Thus, we find that the fluctuations of both
integrable limits tend to approach a brownian-like 1/f2 power spectral density, whereas a density
close to 1/f is found at the transitional point.

4. Conclusions

Self-similarity is a very important property of dynamical systems which can be analyzed using
the usual tools of time-series analysis. For the dynamical systems presenting scale invariance
the power spectral density behaves as a power law P (f) ∼ 1/fβ . The 1/f noise (β = 1) can be
seen as a particular type of self-similar noise. It corresponds to signals that maximize the range
of their correlations. We suggest in this paper that time series of both classical and quantum
dynamical systems that undergo a transition between two regimes, exhibit 1/f behavior near
the transitional point. We report in detail on two specific examples: the Module-1 Logistic Map
for the classical case, and a schematic nuclear shell-model Hamiltonian for the quantum case.
We studied the corresponding time series by spectral analysis, and with the DFA method.

In the case of the module-1 logistic map, for values of the control parameter k < 0, we
found regular time series (with Lyapunov exponent λk < 0), for a value of k = 1, a correlated
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Figure 3: (Color online) The values of β calculated directly from the fit to the slope of the power
spectral density (blue dots) to each δn in function of χ in the Hamiltonian of Eq. (11). The red
squares are the β′s obtained using the relation with αDFA.

non-periodic time series (with Lyapunov exponent λk = 0), and for control parameters k > 1
we observe chaotic time series (with Lyapunov exponent λk > 0). We find 1/f behavior for the
correlated non-periodic time series at the transitional point, whereas the regular and chaotic
time series correspond to 1/fβ (β 6= 1) power spectral density. We describe a generic nuclear ex-
citation spectrum, using a schematic Hamiltonian. The Hamiltonian has two competing terms:
a single-particle term, and a residual quadrupole-quadrupole term. Each term individually is
integrable. A control parameter allows for a smooth transition between the two extreme regimes.
Both extreme integrable excitation spectra correspond to 1/f2 (brownian) power laws, whereas
the transitional excitation spectrum corresponds with a 1/f power spectral density. For two
specific systems, we found a generic 1/f behavior of the corresponding time series, where the
long-range correlations are maximized, exactly at the point where the transition occurs. We
are currently applying these techniques to other systems, such as simple coupled pendula and
photon counting rates in different kinds of emitting light sources [34]. We believe that time se-
ries analysis can provide relevant information in both physical and biological systems, including
early warning signals in diverse phenomena [35].
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