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Abstract

Random intercept models are linear mixed models (LMM) including error and intercept ran-

dom effects. Sometimes heteroscedasticity is included and the response variable is trans-

formed into a logarithmic scale, while inference is required in the original scale; thus, the

response variable has a log-normal distribution. Hence, correction terms should be included

to predict the response in the original scale. These terms multiply the exponentiated pre-

dicted response variable, which subestimates the real values. We derive the correction

terms, simulations and real data about the income of elderly are presented to show the

importance of using them to obtain more accurate predictions. Generalizations for any LMM

are also presented.

Introduction

In economics and other scientific areas such as medicine, geology, and genetics; it is common

to study linear models with a dependent variable defined in a logarithmic scale; for instance in

studies related to income [1], health insurance [2], medical expenditures [3], health care utili-

zation and earnings [4], or sediment discharge [5]. In the logarithmic scale, the variable can

have an associated normal distribution, whereas in the original scale this is not true. In other

words, dependent variables correspond to random variables with a log-normal distribution, a

skewed distribution associated with variables taking only positive values, which has been

extensively used in analyses for real data corresponding to stock prices, income (without

higher-income individuals), time from infection to first symptoms, distribution of particles,

number of words per sentence, age of marriage, size of living tissue, etc. There are instances in

which presence of heteroscedasticidity can be solved considering such logarithmic scale; how-

ever, sometimes this issue is not solved even after the transformation, for instance when the

variability is not proportional to the squared conditional mean response given values of the

explanatory variables. Additionally, there are data in which nesting between observations is

present, for instance, when observations belong to the same spatial cluster. In this case,
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independence between observations is not satisfied, since the values in a same cluster are cor-

related, and a random intercept model is preferred.

A random intercept model (RIM) in a logarithmic scale is a special type of linear mixed

model (LMM) [6, 7], in which:

logðYijÞ ¼ x0ijβþ gi þ �ij; ð1Þ

where i = 1, . . ., m, j = 1, . . ., ni, m is the number of clusters, ni is the number of observations

in the ith cluster, log(Yij) is the response associated with the jth observation in the ith cluster,

xij = (xij1, . . ., xijp)0 is a vector of dimension p associated with the jth observation in the ith clus-

ter corresponding to the p fixed effects given in the regression parameters vector β = (β1, . . .,

βp)0. Variable γi represents an intercept random effect associated with cluster i, which allows

to model the relationship among observations for each cluster, it has a normal distribution

Nð0; s2
g
Þ; additionally, γi, for i = 1, . . ., m, are independent and identically distributed (i.i.d.).

The random error is �ij, and since heteroscedasticidity is assumed in (1), �ij � Nð0; s2w� 1
ij Þ i.i.

d., where w� 1
ij is a known number that allows different variability between observations and

clusters. The terms w� 1
ij are assumed as known; and for instance, they could be obtained using

the unit size or the ELL method [8, 9]. Under this method, two linear models are fitted, a first

model (beta) is the corresponding marginal model and a second one (alpha) is a model associ-

ated with transformed residuals obtained from the beta model (residuals obtained after delet-

ing the effects associated with the random effects); then, an approximation of the terms w� 1
ij

can be used in the random intercept model. Finally, the random effects γi and the errors �ij are

independent.

In many cases, it is necessary to return to the original scale of Yij. Traditionally, this is done

by simply applying an exponential function to the predicted values obtained from the model.

However, this approach does not consider that the random terms involved in the model are

transformed as well, and predictions are subestimated. In some cases, a generalized linear

mixed model (GLMM) [10] with an associated distribution according to the data type could be

used (e.g., gamma, Poisson, etc.). However, sometimes it is preferred to use the normal distri-

bution in the logarithmic scale, when we know the dependent variable has a log-normal distri-

bution (as far as we know, it is not one distribution included in programs that fit GLMM; and,

transforming the dependent variable in a normal GLMM would be similar as what we are

doing), or when other processes depend on such normal RIM. For instance, in small area esti-

mation there are methods based on the RIM, e.g. the empirical best predictor (EBP) method

[11], in which parameters are estimated from a RIM using the sample information; after that,

the conditional distribution of the out-of-sample data given the sample data can be derived

from the normal distribution assumption; the predicted values, simulations, and Monte Carlo

approximations are used to estimate poverty measures at a small area level (for elements in or

outside of the sample), and finally, a parametric bootstrap mean squared error (MSE) estima-

tor is obtained based on the same RIM. Additionally, not all possible distributions are imple-

mented in GLMM and a logarithmic transformation must be used in LMM. In this sense;

recently, [12] proposed a model for data showing skewness at the log scale based on an exten-

sion of a distribution called generalized beta of the second kind, which can be seen as a random

effects model designed for skewed response variables extending the usual log-normal-nested

error model, they also found empirical best predictors for poverty measures in small areas.

Statistical models to correct the logarithmic transformation in linear regression models

have been proposed by different authors, e.g. [5, 13, 14]; other authors have used Bayesian

methods to deal with it, e.g. [15]. Some extensions to address heteroscedasticity in linear

regression models with a logarithmic scale have also been proposed, e.g. [2, 16]. Other authors
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have compared the logarithmic transformation in linear models with other type of models in

different applications, e.g. [4, 17–21]. Moreover, others have studied the Box-Cox transforma-

tion in linear models, e.g. [3, 22–24], being the logarithmic transformation a particular case.

Finally, a Box-Cox transformation in LMM has been studied by [23].

In this paper are derived the correction terms that should be used to obtain more accurate

predictions in a RIM with heteroscedasticity, when predictions are desired in the original

scale. In economics, for instance, this allows a more accurate prediction of income or to

improve predictions of measures depending on it, for instance poverty measures. These cor-

rection terms multiply the exponentiated predicted values obtained from the RIM, calculating

the latter values (without correction) being the usual procedure. These terms are important

since they allow to obtain more precise predictions, with a smaller MSE. Since the RIM con-

tains two random terms, the random effect and the error term, two correction terms are

obtained. When these correction terms are not included, subestimation occurs. Similar terms

have been obtained for linear regression models, but, as far as the authors know, they have not

been derived for RIM. These results are relevant, not only when a RIM is fitted in some data,

but also when methodology is based on such models, for instance in small area estimation.

The motivation example considers a sample of aging individuals over 60 years old in

Mexico, in which some household and socio-demographic measures and income are known.

The information is available by state i = 1, . . ., m; for m = 32, the number of individuals

by state is ni, Yij is the income by individual j = 1, . . ., ni and state i, and there are a total of

n ¼
Pm

i¼1
ni observations. Assume we want to estimate the expected income for these individ-

uals, E[Yij], according to the available explanatory variables. This process could be useful to

estimate income for another set of similar individuals, in which income is not available but the

other variables are, for imputation, or in a simulation process, as in small-area estimation

which depends on simulating income in out-of-sample individuals. In the framework of linear

models, there are several options for this estimation; in some of them, the distributional

assumptions are better satisfied in a logarithmic scale, using log(Yij) as response, but the esti-

mations are required on the original scale. A first option is to estimate the expected income,

without a common random effect for state, simply using a linear regression in a logarithmic

scale and using a correction term to estimate in the original scale. A second option is fitting a

linear model on the log-transformed scale with random effects for state obtaining the expo-

nentiated predicted values to estimate the income. A third option is to associate a gamma dis-

tribution to the income, a commonly used distribution for positive skewed data such as the

income or costs [25], and fit a generalized linear mixed model including random effects for

state. The fourth option we propose is to apply correction terms on the second option. We

show here that this improves the precision of the estimated values. We apply the corrections

terms to both the real data set and in simulated data to evaluate which of the different

described options including random effects has a better performance, for the simulations we

variate the number of clusters, observations by cluster, parameters associated with the variance

of the random effects and error terms, and consider models under different distributions.

This paper is organized as follows. In the second section, we briefly present the correction

term used in a linear regression model in a logarithmic scale, including the so-called smearing

estimate. In the third section, we derive correction terms for a RIM with heteroscedasticity,

and the corresponding correction terms for a RIM with homoscedasticity are obtained as a

particular case. In the fourth section, we obtain simulations using a log-normal distribution

to show that the MSE is minimized when the correction terms are used and in certain

cases when gamma distribution simulations are used, comparing the estimations using our

method with those derived from a generalized linear mixed model. Additionally, the real data
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corresponding to income in elderly people is analyzed to show the use of the correction terms

and to compare predictions using different options to calculate them. In a fifth section, we pro-

pose a generalization for LMM and for transformations different from the logarithm. Finally,

the conclusion is presented in the last section, and some of the linear algebra used for the cal-

culations is presented as Supplementary Material.

Correction term associated with a linear regression model in a

logarithmic scale

In our motivation example, assume that we estimate income in a logarithmic scale without

considering a random effect for state. In this case, we are in the framework of a linear regres-

sion and the second index j is unnecessary, and thus, for simplicity we eliminate it in this

section.

A linear regression model in a logarithmic scale, also called log-normal linear model, is

defined as:

logðYiÞ ¼ x0iβþ ui; ð2Þ

where Yi is the response variable for the ith observation, xi = (xi1, . . ., xip)0 is a vector of the p
explanatory variables for the ith observation, β = (β1, . . ., βp)0 is a vector of dimension p of

regression parameters, and ui is an error term, where ui� N(0, σ2) i.i.d., for i = 1, . . ., n.

In matrix notation, log(Y) = Xβ + u, where Y = (Y1, . . ., Yn)0, X = (x1, . . ., xn)0, and u =

(u1, . . ., un)0.

From (2), the expected value of the response is E½logðYiÞ� ¼ x0iβ:However, since Yi ¼

expðx0iβÞexpðuiÞ; in the original scale, we have that the expected value is E½Yi� ¼

expðx0iβÞE½expðuiÞ�: Omitting subindex i, we have that:

E½expðuÞ� ¼
Z

expðuÞdFu ¼

Z

expðuÞ
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

1

2s2
u2

� �

du

¼ expðs4=ð2s2ÞÞ

Z
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp �

1

2s2
ðu � s2Þ

2

� �

du:

Noticing that the integral in the last equality is equal to one, hence,

E½expðuÞ� ¼ expðð1=2Þs2Þ; ð3Þ

and so E½Yi� ¼ expðx0iβÞexpðð1=2Þs2Þ: Therefore, the estimator of the predicted response is

given by

Ê½Yi� ¼ expðx0iβ̂Þexpðð1=2Þŝ2Þ:

Using the same reasoning and considering heteroscedasticity in (2), allowing to have differ-

ent variability among subjects, i.e. ui � Nð0; s2w� 1
i Þ, E½Yi� ¼ expðx0iβÞexpðð1=2Þs2w� 1

i Þ.

The last term can be estimated by replacing β with the least squares estimator

β̂ ¼ ðX0XÞ� 1X0logðYÞ, and σ2 with the biased (maximum likelihood, ML) or unbiased estima-

tor, ŝ2 ¼ RSS=n or ŝ2 ¼ RSS=ðn � pÞ; respectively, where RSS ¼ ðlogðYÞ � Xβ̂Þ0ðlogðYÞ �
Xβ̂Þ is the residual sum of squares. Observe that Ê½Yi� ¼ expðx0iβ̂Þexpðð1=2Þŝ2w� 1

i Þ is the esti-

mator of the predicted response associated with a log-normal distribution.

A modified non-parametric estimator can also be associated with model (2) by using the

smearing estimate [3]. We assume ui� F i.i.d., i = 1, . . ., n, where E[ui] = 0 and Var(ui) = σ2.
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Since F is not completely known, the empirical distribution,

FnðuÞ ¼
1

n

Xn

i¼1

Ifû i�ug
;

is used, where from (2) ûi ¼ logðYiÞ � x0iβ̂ is the estimated value of ui, and the indicator func-

tion Ifû i�ug
is equal to 1 if ûi � u and 0 otherwise.

Assuming Y0 corresponds to an observed response with associated explanatory variables

values x0, the predicted response is:

E½Y0� ¼

Z

expðx0
0
βþ uÞdFnðuÞ ¼

1

n

Xn

i¼1

expðx0
0
βþ ûiÞ:

Furthermore, substituting the regression parameter β by the estimates β̂, the estimated pre-

dicted response is given by:

Ê½Y0� ¼ expðx0
0
β̂Þ

1

n

Xn

i¼1

expðûiÞ:

Correction terms in a RIM with heteroscedasticity and a logarithmic

scale

In this section we derive the correction terms for a RIM with heteroscedasticity in a logarith-

mic scale. In terms of our motivation example, the process corresponds to estimate the

expected income by fitting a model in a logarithmic scale adding a common random effect for

state and using correction terms that allow more precise estimations in the original scale. First,

a preliminar estimator is introduced. Second, an estimator based on the random effect best lin-

ear predictor is presented. Third, an estimator based on a conditional expectation is proposed.

Finally, a correction term based on the smearing estimate is given.

A preliminar estimator

From the RIM model given in (1), equivalent to Yij ¼ expðx0ijβþ gi þ �ijÞ; then, by using inde-

pendence between γi and �ij, the expectation of the response in the original scale is:

E½Yij� ¼ expðx0ijβÞE½expðgiÞ�E½expð�ijÞ�: ð4Þ

As in (3), the expectations of the exponentials of γi and �ij are E½expðgiÞ� ¼ expðð1=2Þs2
g
Þ and

E½expð�ijÞ� ¼ expðð1=2Þs2w� 1
ij Þ, and, as a consequence,

E½Yij� ¼ expðx0ijβÞexpðð1=2Þs2
g
Þexpðð1=2Þs2w� 1

ij Þ:

Therefore, using the corresponding estimators,

Ê½Yij� ¼ expðx0ijβ̂Þexpðð1=2Þŝ2
g
Þexpðð1=2Þŝ2w� 1

ij Þ; ð5Þ

where ŝ2 and ŝ2
g

are variance estimators corresponding to the error and random effects terms,

respectively, and β̂ is the fixed effects estimator, estimated by using ML or restricted ML esti-

mator (REML) methods.
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An estimator based on the random effect best linear predictor

The predicted values in (5) do not consider that the random effect γi can be estimated through

the best linear predictor,

ĝ i ¼ E½gijlogðYÞ�; ð6Þ

thus having a predictor for each ith observation, for i = 1, . . ., m. The vector of estimated ran-

dom effects corresponds to ĝ ¼ E½gjlogðYÞ�.
Similarly, to obtain a better predictor associated with Yij, it is more adequate to use

E[exp(γi)|log(Y)], instead of E[exp(γi)], in (4). Hence, the predictor is:

Ê½Yij� ¼ expðx0ijβ̂ÞÊ½expðgiÞjlogðYÞ�Ê½expð�ijÞ�: ð7Þ

A first approach to estimate E[exp(γi)|log(Y)] could be simply by using Ê½expðgiÞjlogðYÞ� ¼
expðĝiÞ; so the estimator (7) would be

Ê½Yij� ¼ expðx0ijβ̂ þ ĝiÞÊ½expð�ijÞ�:

Note that,

expðx0ijβ̂ þ ĝiÞ ð8Þ

is the predicted value corresponding to log(Yij) exponentiated to return to the original scale

(naive estimator). This term is multiplied by a term associated with the error. Assuming het-

eroscedasticity, Ê½expð�ijÞ� ¼ expðð1=2Þŝ2w� 1
ij Þ; and the estimator (7) would be:

Ê½Yij� ¼ expðx0ijβ̂ þ ĝiÞexpðð1=2Þŝ2w� 1
ij Þ: ð9Þ

Note that, according to the Jensen inequality,

expðĝiÞ ¼ expðE½gijlogðYÞ�Þ � E½expðgiÞjlogðYÞ�;

thus, expðĝiÞ subestimates E[exp(γi)|log(Y)]. Hence, a better prediction can be derived by

directly obtaining E[exp(γi)|log(Y)].

An estimator based on E[exp(γi)|log(Y)]

In this subsection, we obtain a better predictor by computing directly the conditional expecta-

tion E[exp(γi)|log(Y)]. For this purpose, first we derived the conditional distribution of the

random effect γi conditional to the transformed response for the sample, log(Y) = (log(Y1),

. . ., log(Ym))0, which is a vector of dimension n, where n ¼
Pm

i¼1
ni is the sample size, with

Yi ¼ ðYi1; . . . ;Yini
Þ for i = 1, . . ., m. The random effect has an univariate distribution γi� N(0,

σ2), whereas log(Y) has a multivariate distribution log(Y)� Nn(Xβ, V), where X is the design

matrix of dimension n × p of fixed effects associated with the response, β is a vector of dimen-

sion p of regression parameters, and V is the variance and covariance matrix Var[log(Y)]

with dimension n × n. The expected value of this conditional distribution corresponds to the

predictor given in (6), whereas using properties concerning the distribution of conditioned

multivariate normal random variables, it can be shown (see Proposition 1 in Supplementary

Material) that the variance associated with the conditional distribution corresponds to

VarðgijlogðYÞÞ ¼ s2
g

1 �
s2
g

s2
g
þ s2Pni

j¼1
wij

0

B
@

1

C
A: ð10Þ
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Thus,

gi j logðYÞ � N ĝ i ; s
2
g

1 �
s2
g

s2
g
þ s2Pni

j¼1
wij

0

B
@

1

C
A

0

B
@

1

C
A:

Using the result given in (3), corresponding to the expected value associated with a lognormal

random variable,

E½expðgiÞjlogðYÞ� ¼ expðĝ iÞexp ð1=2Þs2
g

1 �
s2
g

s2
g
þ s2Pni

j¼1
wij

0

B
@

1

C
A

0

B
@

1

C
A:

As a consequence, the predictor of the response in the original scale, Ê½Yij�; is estimated con-

sidering heteroscedasticity and a predictor E[exp(γi)|log(Y)], for each i = 1, . . ., m, and corre-

sponds to

exp x0ijβ̂ þ ĝ i
� �

exp ð1=2Þŝ2
g

1 �
ŝ2
g

ŝ2
g
þ ŝ2Pni

j¼1
wij

0

B
@

1

C
A

0

B
@

1

C
Aexp ð1=2Þŝ2w� 1

ij

� �
: ð11Þ

From (11) and assuming w� 1
ij ¼ 1 (or wij = 1), which is a model with homoscedasticity in the

error term,
Pni

j¼1
wij ¼ ni; and the predictor Ê½Yij� corresponds to

exp x0ijβ̂ þ ĝ i
� �

exp ð1=2Þŝ2
g

1 �
ŝ2
g

ŝ2
g
þ ŝ2=ni

 ! !

exp ð1=2Þŝ2ð Þ: ð12Þ

Observe how the predicted values given in (11) or (12) include the term expðx0ijβ̂ þ ĝiÞ,
which is the naive estimator associated with Yij. This value is corrected according to two fac-

tors, one corresponding to the error and another to the random effect. In contrast, the predic-

tor in (9) only considered the term associated with the error term.

Under heteroscedasticity, the predictor given in (9) subestimates the real value since the

term E[exp(γi)|log(Y)], i = 1, . . ., m, is not used. However, it can be easier to calculate since the

sum
Pni

j¼1
wij is not included. Once, E[exp(γi)|log(Y)] is calculated, the predictor is given in

(11). As far as we know, this expected value had not been obtained before.

Observe that all estimators given in (9), (11), and (12) consider that a normal distribution is

associated with the transformed data.

A correction term based on the smearing estimate

We saw in the second section that a smearing estimator [3] is a nonparametric statistic used to

estimate the expected response on the untransformed scale after fitting a linear model on the

transformed scale, thus being useful when the normality assumption is not satisfied. In this

subsection, we used this type of estimator to obtain correction terms for the RIM. One variant

of the estimators in a model considering homoscedasticity, Eq (12), is obtained by using a

smearing estimate for the error term:

Ê½Yij� ¼ exp x0ijβ̂ þ ĝ i
� �

exp ð1=2Þŝ2
g

1 �
ŝ2
g

ŝ2
g
þ ŝ2=ni

 ! !
1

n

Xm

i¼1

Xni

j¼1

expð�̂ ijÞ: ð13Þ

One variant, considering different variance in each ith cluster, and the corresponding
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smearing estimate, is:

Ê½Yij� ¼ exp x0ijβ̂ þ ĝ i
� �

exp ð1=2Þŝ2
g

1 �
ŝ2
g

ŝ2
g
þ ŝ2=ni

 ! !
1

ni

Xni

j¼1

expð�̂ ijÞ:

Experimental results

In this section, the proposed correction terms for RIM with heteroscedasticity in a logarith-

mic scale are applied to simulation-based scenarios and to an income for elderly people real

dataset.

Simulation-based experiment

A simulation-based experiment is conducted to analyse the correction terms proposed in this

paper.

The goal of this simulation experiment is to demonstrate that the proposed approach imple-

mentation properly works, and, therefore, the real values are adequately recovered by the

estimated ones. We generated one hundred datasets for different scenarios, the generated

covariates and general structure are as follows.

A set of m clusters having ni observations each one, for i = 1, . . ., m, are simulated. For bal-

anced designs m = {50, 100} and ni = {10, 20} 8i. For unbalanced designs there are two scenar-

ios, one with ni = {11, 12, . . ., 50} and m = 40, and another with ni = {11, 12, . . ., 90} and

m = 80. The variables xil are randomly generated from a uniform distribution U(0, 1), for l = 1,

. . ., p and i = 1, . . ., n, where p = 3 and n ¼
Pm

i¼1
ni. In order to include an intercept term, xi1 =

1. These values are the entries in the design matrix X of dimension n × p. The regression

parameters vector is β = (0.8, 1.3, −0.7)0.

The intercept random effects γi, for i = 1, . . ., m, are generated from a normal distribution

with mean 0 and variance s2
g
¼ f0:2; 0:4g, gi � Nð0; s2

g
Þ.

In order to include heteroscedasticity, fixed values were proposed for the weights wij. They

have been deterministically assigned as wij = (i + 1)/10 + j/1000, for i = 1, . . ., m and j = 1, . . .,

ni. The error terms vector � is generated from a multivariate normal distribution Nn(0, R),

where R = diag(S1, . . ., Sm), Si ¼ diagðs2w� 1
i1 ; . . . ; s2w� 1

ini
Þ, and σ2 = {0.2, 0.4}. Note that, by

using properties of the multivariate normal distribution, it is also possible to generate � by the

following way: first simulate �� from a multivariate standard normal distribution Nn(0, In×n),

or equivalently generate ��ij from a univariate standard normal distribution N(0, 1), then do � =

R1/2 �� where R1/2 is such that R = R1/2 R1/2, or equivalently �ij ¼ sw
� 1=2

ij ��ij.

Finally, the response variable in the logarithmic scale is obtained from (1), this is, by

substituting the simulated values in logðYijÞ ¼ x0ijβþ gi þ �ij, thus, the response variable Yij is

obtained as Yij = exp(log(Yij)).

Fig 1 shows one simulated dataset. These graphics show that the response variable log(Y)

has a linear relation with Xβ (graphic in the left). In contrast, as sometimes occurs in practice,

a logarithm transformation is needed on Y to get a linear relationship with the explanatory var-

iables (graphic in the right).

Fig 2 shows the simulated response variable log(Y) and Y, compared with their estimated

responses. The squared red dots represent the naive estimates without correction terms in (8),

and the blue triangles represent the estimated values obtained by using the correction terms

in (11). Note that in general the estimates by using the naive estimator are lower than the
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estimates obtained by using the proposed correction terms in (11), showing that the naive esti-

mator subestimates the real values.

Multiple data sets were generated according to the specifications provided in the above par-

agraphs, and the model’s performance was analyzed by using the mean squared error (MSE),

given by

MSE ¼
1

n

Xm

i¼1

Xni

j¼1

ðYij � Ê½Yij�Þ
2
:

Table 1 shows the means and standard deviations (sd) associated with the MSE for the one

hundred datasets simulated for each scenario defined according to different values of m, ni, σ2,

and s2
g
. The MSE are computed by using different estimates Ê½Yij�; in specific, first by using the

naive estimator of (8) (column MSEnaive), and then by using the correction terms of (5), (9),

(11), and (13) (columns MSE(5), MSE(9), MSE(11), and MSE(13) respectively). Finally, a GLMM

with a gamma distribution and a logarithmic link is fitted (column MSEGamma), being this an

alternative to model positive skewed variables avoiding fitting a transformed response in a

LMM.

From these simulation scenarios it is shown that, assuming heteroscedasticity, the best esti-

mations, with the lowest MSE mean and sd, are in general those obtained by using the correc-

tion terms given in (11). Standard deviations are always larger in column MSE(9). Moreover,

just in one case the means and sd’s in column MSEGamma are lower than others.

Another type of datasets were generated from a GLMM with a gamma distribution associ-

ated with the response Yij and logarithmic link. The values of the parameters are similar to the

ones used in the previous simulation experiment concerning the RIM in a logarithmic scale,

having analogous balanced and unbalanced designs with the same values of m, ni, xil, p, β, and

s2
g
; and including the heteroscedasticity terms wij. The response variable of the GLMM with

Fig 1. Simulated data.

https://doi.org/10.1371/journal.pone.0249910.g001

Fig 2. Simulated response vs. estimated response.

https://doi.org/10.1371/journal.pone.0249910.g002
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gamma distribution and logarithmic link

logðE½Yij�Þ ¼ x0ijβþ gi;

is thus generated from

Yij � Gammaðshape ¼ awij;scale ¼ expðx0ijβþ giÞ=ðawijÞÞ;

where the probability density function of Y� Gamma(shape = a, scale = s) is given by

fYðyÞ ¼ 1

GðaÞsa y
a� 1e� y=s, a> 0, s> 0, and where gi � Nð0; s2

g
Þ. The shape parameter a depends

on α, which was chosen as α = {1, 1.5, 5}. The purpose of simulating data based on a GLMM

with gamma distribution and logarithmic link was to see how our approach worked even

when the true distribution associated with the data was not Gaussian. However, our simula-

tions are based on a model extensively used in positive skewed distributions, being this model

an alternative to fitting a LMM on the transformed response. In fact, for some particular values

assigned to the shape and scale parameters, the distribution associated with the data was simi-

lar as that observed for the LMM in the logarithmic scale.

Table 1. Summary of the MSE for different values of m, ni, σ2, and s2
g
; for data simulated from a RIM in a logarithmic scale.

m ni σ2
s2
g

MSEnaive mean (sd) MSE(5) mean (sd) MSE(9) mean (sd) MSE(11) mean (sd) MSE(13) mean (sd) MSEGamma mean (sd)

Balanced design

50 10 0.2 0.2 4.4 (2.4) 8.2 (3.3) 4.0 (2.2) 4.0 (2.2) 4.2 (2.3) 4.6 (2.4)

50 10 0.2 0.4 6.4 (4.2) 16.1 (6.6) 5.8 (3.6) 5.8 (3.6) 6.1 (4.0) 6.6 (4.2)

50 10 0.4 0.2 26.2 (81.7) 29.5 (80.0) 24.0 (79.0) 23.9 (78.8) 25.3 (81.1) 25.0 (79.2)

50 10 0.4 0.4 171.4 (1233.8) 181.8 (1221.8) 166.2 (1221.5) 165.9 (1220.1) 169.3 (1228.7) 160.7 (1163.1)

50 20 0.2 0.2 5.4 (5.8) 9.3 (6.1) 5.0 (5.4) 5.0 (5.4) 5.2 (5.7) 5.3 (5.6)

50 20 0.2 0.4 8.9 (21.2) 21.2 (36.1) 8.1 (17.9) 8.1 (17.9) 8.6 (20.3) 8.8 (22.1)

50 20 0.4 0.2 19.7 (18.4) 23.3 (18.0) 17.5 (16.2) 17.5 (16.1) 18.9 (17.9) 18.1 (16.9)

50 20 0.4 0.4 34.1 (61.3) 45.0 (61.9) 31.1 (57.4) 31.1 (57.2) 33.0 (60.6) 31.5 (57.2)

100 10 0.2 0.2 2.9 (2.3) 6.7 (2.7) 2.7 (2.1) 2.7 (2.1) 2.8 (2.2) 3.0 (2.3)

100 10 0.2 0.4 4.0 (5.5) 14.0 (7.3) 3.7 (4.8) 3.7 (4.7) 3.9 (5.4) 4.1 (5.4)

100 10 0.4 0.2 19.0 (67.6) 22.6 (68.1) 17.7 (64.3) 17.6 (64.0) 18.6 (67.1) 18.2 (64.5)

100 10 0.4 0.4 11.9 (10.3) 22.0 (11.9) 10.6 (9.1) 10.6 (9.0) 11.4 (10.0) 11.1 (9.4)

100 20 0.2 0.2 2.9 (1.6) 6.5 (2.0) 2.7 (1.4) 2.7 (1.4) 2.9 (1.5) 2.9 (1.5)

100 20 0.2 0.4 3.7 (2.6) 13.4 (4.6) 3.4 (2.3) 3.4 (2.3) 3.6 (2.6) 3.6 (2.5)

100 20 0.4 0.2 10.5 (13.2) 14.0 (13.0) 9.6 (12.8) 9.6 (12.8) 10.3 (13.1) 9.8 (12.7)

100 20 0.4 0.4 27.2 (92.0) 37.0 (91.6) 25.3 (90.1) 25.3 (90.0) 26.7 (91.7) 25.4 (87.3)

Unbalanced design

{11,. . .,50} 0.2 0.2 3.1 (1.6) 6.7 (2.3) 2.9 (1.4) 2.9 (1.4) 3.0 (1.6) 3.1 (1.6)

{11,. . .,50} 0.2 0.4 4.9 (3.1) 15.2 (7.3) 4.6 (2.8) 4.6 (2.8) 4.8 (3.1) 4.9 (3.0)

{11,. . .,50} 0.4 0.2 14.7 (20.2) 18.2 (19.3) 13.5 (18.6) 13.4 (18.5) 14.3 (20.0) 13.9 (19.1)

{11,. . .,50} 0.4 0.4 15.8 (15.3) 25.7 (15.6) 14.3 (14.2) 14.3 (14.1) 15.2 (15.1) 14.7 (14.4)

{11,. . .,90} 0.2 0.2 1.4 (0.7) 5.0 (1.4) 1.4 (0.6) 1.4 (0.6) 1.4 (0.7) 1.4 (0.7)

{11,. . .,90} 0.2 0.4 2.2 (1.2) 12.7 (6.2) 2.1 (1.0) 2.1 (1.0) 2.2 (1.2) 2.2 (1.2)

{11,. . .,90} 0.4 0.2 7.9 (37.5) 11.6 (37.5) 7.6 (36.8) 7.6 (36.8) 7.8 (37.4) 7.6 (36.2)

{11,. . .,90} 0.4 0.4 8.9 (15.1) 18.9 (16.1) 8.2 (14.3) 8.2 (14.3) 8.7 (15.0) 8.4 (14.2)

The means and standard deviations (sd) of the MSE are computed by using the estimates, Ê½Yij�, given by the naive estimator, correction terms of (5), (9), (11), and (13)

and a GLMM with gamma distribution and logarithmic link, respectively.

https://doi.org/10.1371/journal.pone.0249910.t001
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Table 2 shows the means and standard deviations (sd) associated with the MSE for the one

hundred datasets simulated for each scenario, each one defined according to different values

of m, ni, α, and s2
g
; and assuming heteroscedasticity. From these scenarios, it is shown that

when the parameter associated with shape α is much bigger than 1, the best estimations, those

Table 2. Summary of the MSE for different values of m, ni, α, and s2
g
; for data simulated from a GLMM with gamma distribution and logarithmic link.

m ni α s2
g

MSEnaive mean (sd) MSE(5) mean (sd) MSE(9) mean (sd) MSE(11) mean (sd) MSE(13) mean (sd) MSEGamma mean (sd)

Balanced design

50 10 1 0.2 13.9 (11.0) 558.2 (869.0) 74.6 (74.4) 90.1 (93.2) 12.9 (10.7) 12.0 (10.0)

50 10 1 0.4 23.9 (29.2) 577.4 (895.6) 51.4 (57.3) 64.0 (75.6) 23.7 (28.7) 19.8 (23.8)

50 10 1.5 0.2 9.6 (6.0) 29.8 (11.3) 10.7 (5.1) 11.3 (5.3) 8.9 (5.7) 8.5 (5.2)

50 10 1.5 0.4 14.0 (9.6) 40.2 (19.1) 13.1 (7.9) 13.7 (8.2) 13.0 (8.8) 12.0 (7.9)

50 10 5 0.2 2.8 (1.3) 6.2 (1.8) 2.6 (1.1) 2.6 (1.1) 2.7 (1.2) 3.0 (1.4)

50 10 5 0.4 4.5 (3.4) 14.3 (7.9) 4.1 (2.9) 4.1 (2.9) 4.3 (3.2) 4.6 (3.4)

50 20 1 0.2 15.2 (8.5) 311.7 (251.9) 21.9 (12.7) 24.0 (14.6) 16.2 (8.5) 12.9 (6.7)

50 20 1 0.4 26.1 (45.9) 366.9 (187.1) 29.5 (35.3) 31.8 (36.1) 29.5 (45.5) 21.8 (36.5)

50 20 1.5 0.2 9.0 (2.4) 24.0 (6.6) 8.6 (2.0) 8.7 (2.0) 8.6 (2.3) 7.9 (2.0)

50 20 1.5 0.4 13.9 (7.3) 38.4 (14.3) 12.5 (6.0) 12.6 (6.0) 13.7 (6.6) 12.0 (6.0)

50 20 5 0.2 2.7 (1.0) 6.1 (1.6) 2.5 (0.9) 2.5 (0.9) 2.6 (1.0) 2.7 (1.0)

50 20 5 0.4 4.3 (2.6) 14.7 (8.1) 3.9 (2.2) 3.9 (2.1) 4.1 (2.4) 4.2 (2.6)

100 10 1 0.2 8.5 (7.8) 89.5 (54.6) 16.1 (8.8) 18.1 (10.1) 8.1 (7.8) 7.5 (7.1)

100 10 1 0.4 12.2 (7.0) 110.9 (52.5) 15.4 (9.1) 17.3 (11.5) 11.9 (6.8) 10.5 (6.0)

100 10 1.5 0.2 5.6 (2.7) 14.9 (4.1) 5.7 (2.2) 5.9 (2.2) 5.3 (2.6) 5.1 (2.4)

100 10 1.5 0.4 7.8 (3.9) 24.4 (6.9) 7.3 (3.3) 7.5 (3.3) 7.5 (3.7) 7.0 (3.4)

100 10 5 0.2 1.6 (0.5) 5.2 (1.0) 1.5 (0.5) 1.5 (0.4) 1.6 (0.5) 1.7 (0.6)

100 10 5 0.4 2.4 (1.3) 12.6 (4.7) 2.2 (1.1) 2.2 (1.0) 2.3 (1.2) 2.5 (1.4)

100 20 1 0.2 8.6 (3.2) 69.7 (22.0) 10.0 (4.0) 10.5 (4.4) 8.5 (3.3) 7.5 (2.7)

100 20 1 0.4 15.3 (13.5) 86.0 (28.6) 14.1 (11.5) 14.3 (11.5) 15.8 (13.9) 13.1 (11.4)

100 20 1.5 0.2 5.7 (1.8) 13.5 (2.2) 5.2 (1.4) 5.3 (1.4) 5.5 (1.7) 5.0 (1.5)

100 20 1.5 0.4 10.3 (10.8) 25.1 (9.2) 9.0 (8.9) 9.1 (8.9) 10.1 (10.6) 9.0 (9.1)

100 20 5 0.2 1.6 (0.6) 5.0 (1.0) 1.5 (0.5) 1.5 (0.5) 1.6 (0.6) 1.6 (0.6)

100 20 5 0.4 2.5 (1.3) 11.8 (4.5) 2.3 (1.1) 2.3 (1.1) 2.4 (1.2) 2.4 (1.2)

Unbalanced design

{11,. . .,50} 1 0.2 12.6 (10.7) 75.8 (33.8) 18.1 (10.9) 19.8 (11.8) 11.9 (10.7) 11.1 (9.7)

{11,. . .,50} 1 0.4 17.9 (7.5) 134.6 (288.9) 19.4 (9.6) 21.1 (12.0) 35.0 (177.4) 15.2 (6.0)

{11,. . .,50} 1.5 0.2 7.7 (2.0) 15.0 (3.8) 7.4 (1.6) 7.6 (1.7) 7.2 (1.9) 6.9 (1.7)

{11,. . .,50} 1.5 0.4 11.5 (6.6) 26.6 (14.1) 10.5 (5.6) 10.6 (5.6) 10.8 (6.0) 10.2 (5.8)

{11,. . .,50} 5 0.2 2.2 (0.6) 5.7 (2.4) 2.1 (0.5) 2.1 (0.5) 2.1 (0.6) 2.2 (0.6)

{11,. . .,50} 5 0.4 3.2 (1.1) 12.0 (5.6) 3.0 (1.1) 3.0 (1.1) 3.1 (1.1) 3.2 (1.1)

{11,. . .,90} 1 0.2 5.9 (1.4) 18.5 (4.4) 6.1 (1.4) 6.3 (1.5) 5.7 (1.4) 5.4 (1.2)

{11,. . .,90} 1 0.4 8.0 (2.1) 28.3 (8.8) 7.8 (2.1) 7.9 (2.2) 7.8 (2.0) 7.3 (1.9)

{11,. . .,90} 1.5 0.2 3.7 (0.7) 8.0 (1.6) 3.5 (0.6) 3.6 (0.6) 3.6 (0.7) 3.4 (0.7)

{11,. . .,90} 1.5 0.4 6.0 (2.1) 17.1 (6.3) 5.5 (1.7) 5.5 (1.7) 5.7 (2.0) 5.5 (1.8)

{11,. . .,90} 5 0.2 1.1 (0.2) 4.5 (1.3) 1.0 (0.2) 1.0 (0.2) 1.1 (0.2) 1.1 (0.2)

{11,. . .,90} 5 0.4 1.6 (0.5) 11.3 (5.3) 1.5 (0.4) 1.5 (0.4) 1.6 (0.4) 1.6 (0.5)

The means and standard deviations (sd) of the MSE are computed by using the estimates, Ê½Yij�, given by the naive estimator, correction terms of (5), (9), (11), and (13),

and a GLMM with gamma distribution and logarithmic link, respectively.

https://doi.org/10.1371/journal.pone.0249910.t002
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having the lowest MSE mean and sd, are in general those obtained by using the correction

terms given in (11). Hence, in this case, the estimations by using the RIM in a logarithmic

scale and the corrections terms are good, even better than those obtained using a GLMM with

a gamma distribution and logarithmic link. However, when α is close to 1 the estimations

obtained by using the RIM in a logarithmic scale are worst, which makes sense, since a gamma

distribution with parameter α = 1 is an exponential distribution, which completely differs

from a log-normal distribution.

Income for elderly people data application

Returning to our motivation example, we performed analyses based on the National House-

hold Income and Expenditure Survey (Encuesta Nacional de Ingresos y Gastos de los Hogares,
ENIGH) 2016 [26], a biennial study to examine income and its distribution in Mexico. Elderly

people were considered (60 or more years old). Quaterly total income, that is the income con-

sidering all possible sources of income, was obtained for each person as a response variable.

Household and sociodemographic information was considered as well. To avoid presence of

outliers, only people with an income between 2,000 and 40,000 Mexican pesos were consid-

ered. Hence, a total of n = 18, 512 participants were included in the analyses.

As already mentioned in the Introduction section, a logarithmic scale was used for the

response variable. To help deciding which variables to use as explanatory, we first fitted linear

regression models. According to the obtained results, some variables were modified (categories

collapsed) or generated using information from other questions. The final linear model in

which we are based upon has a coefficient of determination of 0.35. The sociodemographic

explanatory variables included in the RIM are: sex, indigeneous (1 = Yes, 2 = No), knowing

how to read and write a note (1 = Yes, 2 = No), level of education (0 = None to 9 = Ph.D.),

marital status (0 = Without a partner, 1 = With a partner), having a health service provider

(1 = Yes, 2 = No), work (1 = Looking for a job, 2 = Retired, 3 = Domestic chores, 4 = Other sit-

uation, 5 = Can not work, 6 = Working), disability (0 = Without, 1 = With), and contribution

to social security in all their lives (1 = Yes, 2 = No). At a household level, explanatory variables

are: number of rooms, presence of wc (1 = Yes, 2 = No), number of light bulbs, household

ownership (1 = Rented, 2 = Borrowed, 3 = Owner but paying it, 4 = Owner, 5 = Intestated,

6 = Another situation), number of residents, type of the location where the household is in

(0 = Rural, 1 = Urban, a location is considered as urban when its size is of 2,500 or more resi-

dents), socioeconomic stratum (1 = Low, 2 = Low medium, 3 = High medium, 4 = High), and

flooring material (1 = Ground, 2 = Cement, 3 = Wood, mosaic, or another floor recovering).

Since individuals are nested in each of the 32 states, an intercept random effect for state was

included, each state having between 400 and 1000 observations. The parameter (fixed effects)

estimations associated with the RIM model with homoscedasticity in the error term are shown

in Table 3. The estimated standard deviation associated with the random effect, ŝg; is approxi-

mately 0.08, and the corresponding value associated with the error term, ŝ; is approximately

0.6. A likelihood ratio test comparing the RIM model with a model without the random effect,

i.e. s2
g
¼ 0; was obtained, with an associated p-value of less than 0.05 (this number when

divided by two is even smaller, a calculation that must be made since the hypothesis involves a

value in the frontier of the parametral space). Hence, a random effect is necessary and a linear

regression model (without random effects) should not be fitted, which we defined as a first

option to possibly use for this data in the Introduction section.

Fig 3 shows the histogram and qq-plot associated with the residuals. They are indicative

that the normality assumption is satisfied, the same being true when the random effects qq-

plot is examined.
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Fig 4 shows the fitted values for the RIM associated with income in a logarithmic scale for

the elderly people data in 2016. The squared red dots represent the naive estimates without

correction terms, and blue triangles represent the estimated values by using the correction

terms in (12), a particular case of (11), and which, according to the simulation results, are the

best estimations (with lowest MSE). Note that the estimates derived through the naive estima-

tor are in general lower than those derived through the proposed correction terms in (12),

showing that the naive estimator subestimates the data. In terms of the options discussed in

Table 3. Parameter estimations for the RIM associated with income in a logarithmic scale for elderly people data in 2016.

Variable Value Std. Error DF t-value p-value

Intercept 9.128 0.043 18261 211.533 <0.001

Sociodemographic variables

Woman -0.176 0.011 18261 -15.476 <0.001

No indigeneous 0.042 0.010 18261 4.002 <0.001

Not knowing how to write/read -0.064 0.017 18261 -3.881 <0.001

Level of education: Prescholar -0.069 0.106 18261 -0.654 0.513

Level of education: Elementary 0.047 0.016 18261 2.924 0.004

Level of education: Junior high 0.171 0.021 18261 8.002 <0.001

Level of education: High school 0.347 0.031 18261 11.088 <0.001

Level of education: Teacher’s school 0.760 0.047 18261 16.087 <0.001

Level of education: Technician 0.222 0.028 18261 7.837 <0.001

Level of education: Bachelor’s degree 0.443 0.028 18261 15.580 <0.001

Level of education: Master’s degree 0.625 0.079 18261 7.949 <0.001

Level of education: Ph.D. 0.685 0.181 18261 3.793 <0.001

With a partner -0.057 0.010 18261 -5.682 <0.001

No health service provider -0.160 0.011 18261 -14.329 <0.001

Work: Looking for a job -0.465 0.052 18261 -8.989 <0.001

Work: Retired -0.120 0.013 18261 -9.005 <0.001

Work: Domestic chores -0.415 0.014 18261 -30.620 <0.001

Work: Other situation -0.452 0.023 18261 -19.800 <0.001

Work: Can not work -0.407 0.024 18261 -17.014 <0.001

With disability -0.075 0.010 18261 -7.430 <0.001

No contribution social security -0.201 0.012 18261 -17.043 <0.001

Household level variables

Number of rooms 0.023 0.004 18261 6.166 <0.001

No wc -0.106 0.029 18261 -3.578 <0.001

Total number of light bulbs 0.014 0.001 18261 10.972 <0.001

Ownership: Borrowed -0.130 0.026 18261 -4.922 <0.001

Ownership: Owner but paying -0.089 0.034 18261 -2.611 0.009

Ownership: Owner -0.092 0.023 18261 -4.023 <0.001

Ownership: Intestated -0.136 0.039 18261 -3.525 <0.001

Ownership: Another situation -0.115 0.059 18261 -1.961 0.050

Number of residents -0.014 0.002 18261 -6.271 <0.001

Urban -0.005 0.012 18261 -0.402 0.688

Stratum: Low-medium 0.096 0.014 18261 6.810 <0.001

Stratum: High-medium 0.074 0.020 18261 3.693 <0.001

Stratum: High 0.144 0.029 18261 5.034 <0.001

Floor: Cement 0.085 0.026 18261 3.222 0.001

Floor: Wood, mosaic or other 0.183 0.028 18261 6.497 <0.001

https://doi.org/10.1371/journal.pone.0249910.t003
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the Introduction section, the naive estimates and those including the correction terms corre-

sponded to the second and fourth, respectively. When the naive estimator is obtained and

compared with the true values, the squared root of the mean squared error is 7027.784,

whereas using the correction factor given in (12), the squared root of the mean squared error

is 6829.003, which is an improvement. In terms of the third option discussed in the Introduc-

tion, we fitted a GLMM using a gamma distribution for the response variable, a logarithmic

link function, and both a penalised quasi-likelihood (PQL) and Laplace approximation meth-

ods, we checked that the normality assumption in the estimated random effects is satisfied. We

obtained values for the squared root of the mean squared error of 6973.41 and 6979.769 under

Fig 3. Residuals. Left: Histogram of the residuals. Middle: qq-plot of the residuals. Right: qq-plot of the residuals of the

random effects.

https://doi.org/10.1371/journal.pone.0249910.g003

Fig 4. Fitted values for the RIM associated with income in a logarithmic scale for elderly people data in 2016. Squared red: naive estimates. Blue

triangles: estimates by using the correction terms in (12).

https://doi.org/10.1371/journal.pone.0249910.g004
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the PQL and Laplace methods, respectively. Hence, in this example the estimates under the

correction term are even more precise that those obtained using a GLMM. We fitted models

considering some heteroscedasticity schemes, for instance using the ELL method, the cluster

size, or the squared residuals, but only with the former method we obtained an inferior mean

squared error than under the homoscedasticity scheme; however, the normality assumption

was not satisfied as well.

Mimic simulation example

Validating our proposed correction terms for RIM including heteroscedasticity in a logarithm

scale, we did a simulation experiment based on 100 data sets of size 2000. The simulated data

approximately mimic the motivating data of the income for elderly people, assuming two

types of weights associated with heteroscedasticity: the cluster size and one of the explanatory

variables, as sometimes is found in real data. Details are given in the S2 Text.

Our simulation strategy generated the means and standard deviations of the MSE for each

one of the corrections terms considering the two types of weights and varying values associated

with the variance of the random effects and error terms, see Table 4. The estimations with the

lowest MSE corresponded to those obtained using the correction terms associated with Eqs (9)

and (11). See details and a table including more values in the Supplementary Material.

Generalization to linear mixed models and with functions different

from the logarithm

In this section, we generalize the correction terms for any LMM and for transformations dif-

ferent from the logarithm. We have seen that the estimators based on the conditional expec-

tancy associated with the random effects given the transformed response have a better

performance; thus, we present only this type of estimator for LMM, obtaining a closed

Table 4. Summary of the MSE for the mimic simulation example.

Weights σ σγ MSEnaive mean (sd) MSE(5) mean (sd) MSE(9) mean (sd) MSE(11) mean (sd) MSE(13) mean (sd)

(1) 0.15 0.079 183.0 (5.9) 797.6 (104.2) 183.0 (5.9) 183.0 (5.9) 183.0 (5.9)

(1) 0.15 0.32 201.7 (16.2) 3383.0 (607.6) 201.7 (16.2) 201.7 (16.2) 201.7 (16.2)

(1) 0.15 1.28 753.6 (350.0) 35308.6 (19790.8) 753.8 (350.0) 753.8 (350.0) 753.7 (350.0)

(1) 0.594 0.079 725.3 (22.4) 1053.2 (84.1) 724.6 (22.3) 724.6 (22.3) 724.7 (22.3)

(1) 0.594 0.32 796.7 (67.6) 3432.5 (696.9) 796.0 (67.5) 796.0 (67.5) 796.0 (67.5)

(1) 0.594 1.28 2994.2 (2264.1) 34012.2 (27261.6) 2991.4 (2262.3) 2991.3 (2262.3) 2991.9 (2262.5)

(1) 1.2 0.079 1495.4 (49.6) 1680.7 (68.5) 1490.5 (49.1) 1490.4 (49.1) 1490.7 (49.1)

(1) 1.2 0.32 1634.4 (107.4) 3713.1 (592.2) 1629.5 (106.4) 1629.5 (106.4) 1629.9 (106.5)

(1) 1.2 1.28 6852.0 (5789.4) 38593.9 (36263.5) 6840.1 (5851.4) 6840.2 (5852.4) 6844.1 (5869.6)

(2) 0.15 0.079 540.1 (12.1) 928.9 (88.2) 539.9 (12.1) 539.9 (12.1) 539.9 (12.1)

(2) 0.15 0.32 592.8 (38.2) 3306.8 (562.7) 592.5 (38.2) 592.5 (38.2) 592.6 (38.2)

(2) 0.15 1.28 2290.2 (1369.8) 35322.8 (24328.5) 2288.1 (1367.9) 2288.1 (1367.9) 2289.4 (1369.4)

(2) 0.594 0.079 2264.4 (81.6) 2387.4 (86.0) 2245.5 (78.5) 2245.5 (78.5) 2251.4 (80.5)

(2) 0.594 0.32 2506.9 (206.4) 4311.0 (683.5) 2484.7 (200.4) 2484.7 (200.3) 2491.3 (203.9)

(2) 0.594 1.28 8994.3 (4847.5) 34063.3 (21229.0) 8909.1 (4786.8) 8908.9 (4786.4) 8934.1 (4792.5)

(2) 1.2 0.079 5546.3 (647.1) 5472.5 (622.3) 5412.8 (629.8) 5412.8 (629.7) 5453.8 (648.7)

(2) 1.2 0.32 6289.4 (1296.7) 7195.0 (1295.5) 6122.4 (1257.0) 6122.4 (1256.9) 6182.5 (1301.5)

(2) 1.2 1.28 23639.7 (17407.2) 47081.2 (37670.3) 23141.8 (17392.3) 23143.1 (17395.0) 23264.0 (17244.1)

(1) Size of each cluster. (2) Total number of light bulbs.

https://doi.org/10.1371/journal.pone.0249910.t004
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formula. A LMM includes q random effects; for instance, we can have random effects associ-

ated with some or all the fixed effects. In its matrix form, a LMM corresponds to

logðYÞ ¼ Xβþ Uγ þ �;

where X is the design matrix associated with the fixed effects of dimension n × p and β is the

corresponding vector of parameters of dimension p. On the other hand, γ = (γ1, . . ., γm) is a

vector of dimension mq of random effects, where γi a vector of dimension q corresponding to

all random effects associated with a cluster i, with distribution γ� Nmq(0, G), with G a diago-

nal matrix of dimension mq ×mq, G = diag(D, D, . . ., D), where D is the variance and covari-

ance matrix of dimension q × q associated with the random effects, which is assumed to be

the same for all clusters. This term is multiplied by the matrix U, a block diagonal matrix of

dimension n ×mq given by U = diag(U1, U2, . . ., Um), with Ui of dimension ni × q. The vector

of errors has distribution �� Nn(0, R), where R is a block diagonal matrix of dimension n × n
given by R = diag(S1, S2, . . ., Sm), with Si a diagonal matrix of dimension ni × ni given by

Si ¼ diagðs2w� 1
i1 ; s

2w� 1
i2 ; . . . ; s2w� 1

ini
Þ. The error terms and random effects are assumed inde-

pendent. Considering an individual j in a cluster i; i = 1, . . ., m and j = 1, . . ., ni, the expression

analogous to (1) associated with a LMM is:

logðYijÞ ¼ x0ijβþ u0ijgi þ �ij; ð14Þ

where uij is the jth row corresponding to matrix Ui.

From the joint distribution of the random effects γ and transformed response log(Y), we

obtain (see Proposition 2 in S1 File) that the variance and covariance matrix associated with

cluster i, Var(γi|log(Y)), for i = 1, . . ., m, is

VarðgijlogðYÞÞ ¼ D � DU 0iðUiDU 0i þ SiÞ
� 1UiD ð15Þ

and

gi j logðYÞ � Nqðĝ i ; Var½gijlogðYÞ�Þ;

where ĝ i is the best linear predictor of γi, ĝ i ¼ E½gijlogðYÞ�. Consequently,

u0ijgi j logðYÞ � Nðu0ijĝ i ; u0ijVar½gijlogðYÞ�uijÞ;

and using the expected value corresponding to a log-normal distribution:

E½expðu0ijgiÞjlogðYÞ� ¼ expðu0ijĝ iÞexpðð1=2Þu0ijVar½gijlogðYÞ�uijÞ: ð16Þ

Thus, to estimate E[Yij] in a cluster i; i = 1, . . ., m, for an individual j; j = 1, . . ., ni, where Yij

is modeled as in (14), we use the estimator expðð1=2Þŝ2w� 1
ij Þ for the random error �ij, multi-

plied by the expected value associated with the random effects conditional to the response

E½expðu0ijgiÞjlogðYÞ� calculated in (16), and the constant part expðx0ijβ̂Þ. The estimator corre-

sponds to:

expðx0ijβ̂ þ u0ijĝ iÞexpðð1=2Þu0ijVar½gijlogðYÞ�uijÞexpðð1=2Þŝ2w� 1
ij Þ: ð17Þ

In (17), all terms are known once substituting the estimated variance and covariance terms

for the random effects in D and ŝ2 in Si, both D and Si part of Var(γi|log(Y)). These terms and

obtained after fitting the model.

For instance, consider a model including random effects associated with the intercept and a

variable u. For each cluster i = 1, . . ., m, γi = (γi1, γi2)0, with γi1 and γi2 scalars corresponding to
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the random effects for the intercept and variable u, respectively. The values associated with

variable u in cluster i can be accommodated in a vectorial form as ui ¼ ðui1; . . . ; uini
Þ
0
, thus Ui

is a matrix of dimension ni × 2 such that Ui ¼ ð1ni
;uiÞ

0
, where 1ni

corresponds to the intercept.

Finally,

D ¼
s2
g1

s2
g1g2

s2
g1g2

s2
g2

0

@

1

A; ð18Þ

where s2
g1

and s2
g2

correspond to the variances associated with the random effects for the inter-

cept and variable u, respectively, and s2
g1g2

is the corresponding covariance. It is easy to derive

that in this case (15) corresponds to

Var½gijlogðYÞ� ¼ D � Ai½s
2
g1
1ni

10ni þ s
2
g1g2

ui1
0

ni
þ s2

g1g2
1ni

u0i þ s
2
g2
uiu0i þ Si�

� 1A0i;

with A0i = ðs2
g1
1ni
þ s2

g1g2
ui ; s

2
g1g2

1ni
þ s2

g2
uiÞ and D given in (18). This equation can be substi-

tuted in expression (17) using estimations of s2
g1

, s2
g2

, and s2
g1g2

, values obtained after fitting the

LMM in any statistical software.

We could consider a transformation more general than a logarithm, for instance a Box-Cox

transformation g, whose inverse follows a power-normal distribution. Each observation Yij; for

j = 1, . . ., ni and i = 1, . . ., m, associated with a MLM under a Box-Cox transformation with

parameter λ, g(Yij), satisfies that gðYijÞ � Nðm; s2
�
Þ with m ¼ x0ijβ and s2

�
¼ u0ijDuij þ s

2w� 1
ij .

The expected value E[X] of a power-normal distribution, in this case X � PNðl; m; s2
�
Þ, is cal-

culated in [27] (Lemma 1). After considering the estimated parameters, this expression corre-

sponds to one class of corrected predictions in the original scale, that without conditioning

the random effects to the sample. For instance, for λ = 0, the expected value given in [27] is

EðXÞ ¼ expðmþ s2
�
=2Þ, corresponding to Eq (5) when only one random effect is used.

For an invertible function g(�), and considering estimators based on conditioning on the

sample, as in (11) for a RIM or (17) for any LMM, a simulation can be used. Assuming that in

the transformed scale all normality assumptions are satisfied, we can apply similar results as

when a MLM and logarithm transformation were considered, and

u0ijgi j gðYÞ � Nðu0ijĝ i ; u0ijVar½gijgðYÞ�uijÞ; ð19Þ

where Var[γi|g(Y)] corresponds to (15). The expected value of the response in the original

scale in a cluster i for an individual j

E½g � 1ðx0ijβþ u0ijgi þ �ijÞjgðYÞ�:

can be approximated with simulations by generating a set of random numbers zl, for l = 1, . . .,

L, according to the distribution given in (19), and obtaining:

PL
l¼1

g � 1ðx0ijβþ zl þ �ijÞ
L

;

using �̂ ij or E[�ij] instead of �ij, the expected value E[�ij] could be obtained by simulating the

distribution of �ij.

Conclusion

The correction terms we proposed for a RIM with or without heteroscedasticity with response

in a logarithmic scale enable more precise predictions. This is useful since responses in a

PLOS ONE RIM and LMM with heteroscedasticity in a logarithmic scale: Correction and prediction in the original scale

PLOS ONE | https://doi.org/10.1371/journal.pone.0249910 April 14, 2021 17 / 21

https://doi.org/10.1371/journal.pone.0249910


logarithmic scale are commonly used, specially in financial and poverty analyses, and with our

procedure, we can obtain more precise predictions of an economic measure in a population or

better simulations of the distribution of the response, or an associated measure, for a new pop-

ulation (by simulating the error term and random effects and using the values of the explana-

tory variables). As the simulations assuming log-normal distributions and real data show, the

best predictions, with lowest MSE, correspond to those including two correction terms, one

for the errors and another for the random effects. These correction terms are easy to calculate

and implement without the need of special software.

Even though in a GLMM, a distribution different from the normal can be used, it is some-

times desired simply to work in a logarithmic scale when the normal behaviour under this

transformation is properly satisfied; or in other words, when a lognormal distribution ade-

quately fits some data. Besides, through simulations with gamma distributions, a commonly

used distribution used to model income or similar variables, we showed that the predictions

using the two correction terms are more precise than those obtained through a GLMM with

a gamma distribution, as long as the parameter α associated with shape, in the gamma distri-

bution is not close to one. And, even when the parameter is one, corresponding to an expo-

nential distribution, as the number of clusters and observations in each cluster increase, the

estimations obtained using the correction terms are close to those obtained with the GLMM

and a gamma distribution (being in general better the ones using the smearing estimate, spe-

cially for lower values associated with the variance of the random effect, and viceversa), and

better that those obtained through another correction method or without correction terms.

On the other hand, in other type of analyses, as in some small area estimation techniques, it

is desirable to preserve a normal distribution since the fit of a RIM is just one first step in a

set of processes, all assuming normality; hence, assuming another distribution would change

the complete technique; and, without the correction, the estimated poverty measures or any

measure associated with a small area might be incorrect. The weights we considered for het-

eroscedasticity were of the form s2w� 1
ij ; however, a more general form s2

ij can be used by

substituting s2
ij for s2w� 1

ij in all formulas. If the variance structure is estimated using a func-

tion, for instance an exponential variance structure, we estimate the LMM including this

structure. Thus, the parameters for the structure are estimated with the fixed and random

effects parameters. Any inference should be performed being careful that the degrees of free-

dom are corrected or appropriate corrections applied, particularly for small sample sizes [28]

and non-linear covariance structures [29]. For the predictions in the original scale, the s2
ij

terms can be calculated using the estimated parameters corresponding to the variance

structure and then using our formulas. Any further inference should be taken with care con-

sidering the variance structure was estimated. In fact, assuming any correlation structure

associated with the error for each cluster, i.e. assuming that the matrix Si is not necessarily

diagonal (however, the correlation structure between clusters is still assumed diagonal), for

instance when time is involved, Eqs (15) and (16) still hold true, and formula (17) might be

used modifying the third term accordingly, though care should be taken if any inference is

required.

We also generalized the procedure considering any LMM, being RIM a particular case,

and outlined the process that could be followed when a function different from the logarithm

is used, though it seems that approximations should be used in this general case. Future

work could be to continue working with transformations different from the logarithm to see

if better predictions with closed formulas can be obtained. An exact variance estimator of the

predicted values is also something desirable, though it seems, from some preliminary calcula-

tions, that a closed formula cannot be obtained; however, a better approximation than one
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using only simulations might be possible. We are working in the implementation of the cor-

rection terms in two-part models and their variants, for instance for health expenditure data

in which there is concentration in the zero value since some people do not spend money,

to see whether our correction terms allow to obtain better predictions as some preliminary

analyses have shown.
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