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Abstract 

Cardiovascular diseases (CVDs) are one of the leading causes of death in patients over 60 years 

with Huntington's disease (HD). Here, we investigated if age-related oxidative stress (OS) is a 

relevant factor to develop cardiac damage in an in vivo model of striatal neurodegeneration induced 

by 3-nitropropionic acid (3-NP).  We also evaluated the potential effect of tert-butylhydroquinone 

(tBHQ) to increase the Nrf2-regulated antioxidant response in hearts from adult and aged rats 

intoxicated with 3-NP. Our results showed that 3-NP-treatment did not induce cardiac dysfunction, 

neither in adult nor in aged rats. However, at the cellular level, adult animals showed higher 

susceptibility to 3-NP-induced damage than aged rats, which suggest that chronic oxidative stress 

ongoing during aging might have induced an hormetic response that probably prevented from 

further 3-NP damage. We also found that the oxidative unbalance concurs with unresponsiveness of 

the Nrf2-mediated antioxidant response  in old animals.  
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1. Introduction 

Current statistics indicate that about 20% of older adults suffer from a neurologic disorder, which 

means that 400 million people might be potentially affected by neurological diseases in a near 

future. Huntington's disease (HD) is an inherited genetic disease that occurs in younger patients, but 

that still shares many features of common neurological diseases prevailing in elderly individuals.  It 

causes loss of medium spiny neurons in the striatal nuclei due to a mutation in the huntingtin gene 

(Menze et al., 2016). Cognitive and behavioral abnormalities are often accompanied by cardiac 

dysfunction. In fact, epidemiological studies indicate that cardiovascular diseases prevail in HD 

patients (Sorensen and Fenger, 1992; Wu et al., 2016) standing for the second-leading mortality 

cause in HD patients over 60-years old (Lanska et al., 1998; Zielonka et al., 2014; Mielcarek et al., 

2014a).  

HD transgenic models concur with cardiac dysfunction (Kiriazis et al., 2012; Wood et al., 2012), 

remodeling processes (Mielcarek et al., 2014a), heart failure (Mihm et al., 2007), diminished 

hypertrophic response (Mielcarek et al., 2014b), impaired energy imbalance and nucleotide 

metabolism (Toczek et al., 2016a; Toczek et al., 2016b). Moreover, 3-nitropropionic acid (3-NP) 

systemic administration, an accepted model that mimics HD symptoms and neuropathology 

(Hariharan et al., 2014), has been related with histological, biochemical and ultrastructural changes 

in mice muscle (Gabrielson et al., 2001; Hernández-Echeagaray et al., 2011), along with decrement 

in blood pressure, bradycardia. and ATP diminution in heart atria (Castillo et al., 1993). 3-NP also 

induces the opening of the mitochondrial permeability transition pore (mPTP) (Mirandola et al., 

2010) and inhibits oxygen consumption in isolated cardiac mitochondria (López et al., 1998).  It is 

accepted that 3-NP-induced neurodegeneration relies on the irreversible inhibition of mitochondrial 

succinate dehydrogenase (SDH) producing an energetic deficit, excitotoxicity and oxidative stress 

(Liot et al., 2009; Cho and Kim, 2015). 

One of the most relevant players in maintaining redox cellular homeostasis is the transcription 

factor Nrf2 (nuclear E2-related factor 2), which is activated either by reactive oxygen species 
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(ROS), electrophilic agents (e.g., dimethylfumarates, aldo-keto reductases, oltipraz) or natural 

compounds (e.g., curcumin, sulforaphane) (Abed et al., 2015; Lu et al., 2016; Penning, 2017).  Age-

dependent decline in the antioxidant response has been related with reduced nuclear translocation 

and/or Nrf2 stability loss (Safdar et al., 2010, Miller et al., 2012; Silva-Palacios et al., 2016). 

However, some reports have shown that several interventions such as exercise training  (Gounder et 

al., 2012), α-lipoic acid (Suh et al., 2004) and tert-butylhydroquinone (tBHQ) treatments (Alarcón-

Aguilar et al., 2014) restored Nrf2 nuclear levels or protected cells from further damage (Silva-

Palacios et al., 2017) in different models.  

Consequently, since cardiac complications associated to HD have not been explored during aging, 

and neither if attenuation of oxidative stress might be a possible mechanism for cytoprotection, in 

this work we evaluated if heart dysfunction coexists with 3-NP-induced neurodegeneration and, if 

the nuclear factor Nrf2 could be pharmacologically activated by tBHQ in old rats.  

 

2. Material and Methods  

2.1 Animals and ethical approval 

Adult (9 months-old) and old (24 months-old) albino Wistar female rats (Rattus norvegicus), 

provided by the closed breeding colonies at the National Institute of Cardiology, Ignacio Chavez 

and Autonomous Metropolitan University-Iztapalapa were used in this study. A total of 39 adult 

and 36 old rats were employed. The animals were kept in acrylic boxes under standard conditions of 

room temperature (25 ± 3°C) and 12h light:12h dark cycles. They were housed 3-per-cage in acrylic 

boxes and provided with standard commercial rat diet (Rodent Chow; Purina, St. Louis, MO) and 

water ad libitum. All animals were handled according to the criteria established by the standard of 

“Care and Use of Laboratory Animals” published by the United States National Institutes of Health 

(US-NIH, NIH publication 85-23, 1985) and approved by the Ethics Committee of the National 

Institute of Cardiology, Ignacio Chavez. The experimental protocols followed the guidelines of 
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Official Mexican Standard for the use and care of laboratory animals (NOM-062-ZOO-1999) and 

for disposal of biological residues (NOM-087-SEMARNAT-SSA1-2002). 

 

2.2 Reagents 

Tert-butylhydroquinone (tBHQ), 3-nitropropionic acid (3-NP) and other chemicals were purchased 

from Sigma-Aldrich (San Luis, MO). The compounds were dissolved in isotonic saline solution 

(ISS) for subsequent injection. Chemiluminescent detection system and Oxiblot
TM

 kit were obtained 

from Millipore (Bedford, MA). The kits used for electrophoretic mobility assay (EMSA) and for 

nuclear protein extraction were purchased from Thermo Scientific (Pierce Biotechnology, 

Rockford, IL, USA).  

 

2.3 Antibodies 

All primary antibodies were obtained from commercial sources and used according to the 

manufacturer´s recommendations. Anti-Nrf2 (sc-722), anti-GST (sc-138), anti--GCS (sc-22755), 

anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, sc-47724) were obtained from Santa 

Cruz Biotechnology (Santa Cruz, CA). Anti-HO-1 (#3391) from BioVision (Milpitas, CA), anti-

MMP-2 (#13405) from Millipore (Bedford, MA) and anti-Collagen-III (#26310) from GeneTex 

(San Antonio, TX).  Either anti-GAPDH or anti-actin were used as loading control for cytosolic 

fractions and lamin A (ab26300, Abcam, Cambridge, MA) for nuclear fractions. 

 

2.4 Experimental groups 

Adult and elderly rats were randomly assigned into 4 experimental groups as shown in Figure 1 and 

described below:  

1. Control group, rats that received only ISS intraperitoneally (i.p) as vehicle during 11 days. 

2.  tBHQ group, rats received ISS i.p during 4 days and then tBHQ (100 mg/Kg/day) i.p for 7 

days.  
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3. 3-NP group, rats received ISS i.p for 7 days and then 3-NP (10 mg/Kg/2 doses per day) i.p. 

for 4 days.  

4. Preconditioned group (PreC), rats treated with tBHQ i.p. for 7 days, followed  by 3-NP 

treatment (10 mg/Kg/2 doses per day) i.p. for 4 days.  

This particular 3-NP-administration protocol has been associated with striatal degeneration and HD 

symptoms such as increased reactive gliosis, cell death and hypoactive motor behavior. tBHQ-

conditioning as described here has been previously reported to diminishes all those conditions 

(Silva-Palacios et al., 2017).  

 

2.5 Evaluation of cardiac function by echocardiography 

Rats from the different groups were anesthetized with a low dose of sodium pentobarbital (1.9 

mg/100g body weight, i.p.) to perform echocardiographic analysis using a Sonos 550 

echocardiographer (Koninlijke Philips Electronics, Eindhoven, The Netherlands) using a 12 MHz 

transducer according to our previous report (Hernández-Reséndiz et al., 2013).  Paraesternal short 

and long axis were analyzed by two-dimensional M-mode echocardiography, evaluating at least 3 

pulses in each rat. The cavity and the thickness of the left ventricle (LV) were measured to calculate 

the ejection fraction (EF) using the formula: %EF=Y+[(100-Y)•0.15), where Y=[LVEDD
2
-

LVESD
2
/LVEDD

2
]•100 as well as the fractional shortening %FS=[(LVEDD-

LVESD/LVEDD)•100], where LVEDD is the dimension of the LV at the end of diastole, LVESD is 

the dimension of LV at the end of systole (Stein et al., 2007). Animals were allowed to recover for 

some days before euthanization. 

 

 

2.6 Histological analysis 

The animals were anesthetized with sodium pentobarbital (5mg/100g body weight, i.p.) and 

complete lack of pain response was assessed by determining pedal withdrawal reflex. Hearts and 
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lungs were extracted and weighted. Cardiac tissue was fixed in p-formaldehyde 4% for 48 h, 

embedded in paraffin and serially sectioned on a microtome rotation Leica RM 2125RT (Leica 

Biosystems, Wetzlar, Germany). Cardiac tissue sections (2 μm thick) were stained with 

hematoxylin-eosin (H&E) or Masson's trichrome. Left ventricles were analyzed using a Carl Zeiss 

Primo Star Image Analyzer with an integrated Zeiss Axiocam ERc 5S camera (LLC, US).  

 

2.7 Protein carbonylation assay 

Carbonyl groups were detected using the Oxiblot
TM

 Protein Oxidation Detection kit (Millipore, 

Billerica, MA), according to the manufacture’s instructions. Band intensity was digitally quantified 

using Image Studio Lite Software (Li-Cor Biosciences, Lincoln, Nebraska USA). 

 

2.8 Lipid peroxidation assay  

Thiobarbituric acid reactive substances (TBARS) analysis was used to evaluate lipid peroxidation in 

heart homogenates according to Persky et al. (2000) with some modifications.  Cardiac tissue 

homogenates were heated for 20 min at 37ºC before adding 20% of trichloroacetic acid (TCA) in 

hydrochloric acid (HCl) 1M.  The samples were incubated with 1% thiobarbituric acid (TBA) for 15 

min in boiling water (90ºC) and then, placed on ice and centrifuged at 500 × g for 15 min at 4ºC. 

The formed MDA•TBA adduct in the supernatant was detected at 532 nm in a Beckman DU-65 

Spectrophotometer (Brea, California, USA). MDA concentrations were calculated against a 

standard curve of 1,1,3,3-tetramethoxypropane (TMPO) and results were expressed in TBARs 

nmol/mg protein. Protein concentration was determined according to Lowry et al. (1951).  

 

2.9 Reduced glutathione quantification  

Glutathione determination was made according to Buelna-Chontal et al. (2014). In brief, heart 

homogenates were incubated in a reaction mixture containing Krebs-Henseleit buffer, pH 7.4, 1 

mM monochlorobimane (mCB) and glutathione S-transferase (1 U/ml).  Changes in fluorescence 
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were measured at λex 385 nm and λem 478 nm in a Perkin Elmer LS 55 Fluorescence Spectrometer 

(Waltham, Massachusetts, US) at 37ºC. The obtained values were compared with a GSH standard 

curve and results were expressed as μM GSH/mg protein. Protein concentration was determined 

according to Lowry et al. (1951). 

 

2.10 Cytosolic and nuclear fractions isolation  

Heart tissue (100 mg) was obtained at the end of the experimental protocols. Tissue was frozen and 

grinded to powder using a mortar and a pestle. Then the pulverized tissue was dissolved in 1 ml of 

ice cold RIPA lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% SDS, 0.5% sodium 

deoxycholate) and 10 l phenylmethylsulfonyl fluoride (1 mM) (Hernández-Reséndiz et al., 2015), 

supplemented with protease inhibitor (Complete
TM

, Mini Protease Inhibitor Cocktail, Roche) and 

homogenized using a Dounce homogenizer in cold. Homogenates were centrifuged at 11,000 × g 

for 15 min at 4ºC, the supernatant was transferred in a new tube and stored at -70ºC for further 

analysis. Cytosolic and nuclear fractions were obtained with the NE-PER
®

 kit (Thermo Scientific, 

Pierce Biotechnology, Rockford, IL, USA) according to manufacturer´s instructions and stored at -

70ºC. Protein concentration was determined according to Lowry et al. (1951).  

 

2.11 Western blot analysis 

Proteins (30-50 μg) from each fraction protein were separated on 10-15% SDS-PAGE, transferred 

to polyvinylidene difluoride (PVDF) membranes (Inmobilon®-P, Millipore Billerica, MA) and 

incubated with specific primary antibodies against Nrf2 (1:200), GST (1:200), γ-GCS (1:200), HO-

1 (0.5μg/ml), MMP-2 (0.5μg/ml) and Collagen-III (1:1000). The immunoblotted proteins were 

visualized using a chemiluminescent detection system (Millipore Billerica, MA). Each membrane 

was incubated with their respective load control (markers of cytosolic and/or nuclear fractions, 

GAPDH/Actin (1:1000) and Lamin-A (1:1000), respectively.  All images were analyzed using an 

Image Studio Lite Software (Li-Cor Biosciences, Lincoln, Nebraska USA).  
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2.12 Electrophoresis mobility assay (EMSA) 

Electrophoresis mobility assay was performed according to Buelna-Chontal et al. (2014). Briefly, 

biotinylated oligonucleotide containing the antioxidant response element (ARE) sequence 

(GATCTTTTATGCTGAGTCATGGTTT) (Accesolab S.A. de C.V., Mexico City, Mexico) was 

used as the DNA target. Nuclear proteins (10 μg) were incubated in binding reaction buffer 

containing 50 ng/μl poly (dI•dC), 0.05% Nonidet P-40, 2.5% glycerol, 10 mM EDTA, 5 mM 

MgCl2, 0.05 M KCl and 20 fmol of Biotin-end-labeled ARE (B-ARE) for 60 min at room 

temperature.  The competition assay was performed by adding an excess of unlabeled ARE for 30 

min before the addition of B-ARE. Then, the samples were loaded onto native 5% polyacrylamide 

gel pre-electrophoresed for 60 min in Tris-Borate-EDTA (TBE) buffer. The complexes were 

separated at 100 V and transferred onto a positively charged nylon membrane in TBE at 380 mA for 

30 min. Transferred DNA was crosslinked to the membrane and chemiluminescence detection was 

performed using stabilized streptavidin–horseradish peroxidase conjugate. Nrf2-DNA binding 

analysis was performed using an Image Studio Lite Software (Li-Cor Biosciences, Lincoln, 

Nebraska USA). 

 

2.13 Statistical analyses 

The data represent the mean ± standard deviation (SD) of at least 3 independent experiments for 

each of the experimental protocols in triplicate. Significance levels (p0.05, p0.01, p0.001) were 

evaluated through an analysis of variance (ANOVA) followed by a post-hoc test for multiple 

comparisons using the Tukey test (GraphPad Prism version 6.0). 
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3. Results 

3.1 Cardiac function and structural analysis 

Representative echocardiograms from both age groups are shown in Figure 2.  Heart weight (HW), 

body weight (BW), shortening fraction (SF) and heart rate (HR) increased in control old animals 

(p0.01) (Table 1) in comparison with control adult animals; whereas lung weight/body weight 

(LW/BW) and left ventricle dimension at end-systole (LVSd) decreased in older animals from the 

control group (p0.01) as compared to adult animals without any treatment.  

Echocardiographic data were similar in all adult animals groups (Table 1). Conversely, 3-NP and 

tBHQ treatment in old animals diminished BW, HW and LVSD as compared with their own control 

group (p0.05, p0.01). Interventricular septum (IVS) thickness and HW decreased in the PreC 

adult and old animal groups, but none of these changes were reflected in the ejection fraction (EF), 

an indicator of cardiac performance. Therefore, 3-NP-induced both neurodegeneration and direct 

toxic effects in the myocardium of old rats, but did not concur with cardiac dysfunction neither in 

adult nor in aged rats. 

 

3.2 Cardiac histology 

As cells may have thresholds for damage accumulation before function is impaired, we explored the 

effect of 3-NP between both age groups at a cellular level. Cardiac cells morphological analysis was 

performed after H&E staining. Adult control group heart sections showed a normal cardiomyocytes 

architecture with centrally placed nuclei (Figure 3A), while in the aged control group, cardiac cells 

were enlarged (Figure 3B). However, in both groups the fibers organization was preserved. Hearts 

from adults or old animals supplemented with tBHQ, did not show any visible changes as compared 

with their own controls (Figure 3C and D), whereas 3-NP-treatment induced a major myofibrils 

disorganization in adult hearts (Figure 3E), than in old rats hearts (Figure 3F). Cardiac structure in 

the adults PreC group was preserved (Figure 3G), whereas no obvious changes in aged heart were 

observed (Figure 3H).  
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The extracellular matrix major components collagens and fibronectin were analyzed with Masson´s 

trichrome staining. Compared with the adult control group (Figure 3I), older animals showed higher 

interstitial fibrosis (Figure 3J). tBHQ treatment induced a slight increase in fibrosis in adult animals 

(Figure 3K) and exacerbated fibrosis in aged rats cardiac tissue (Figure 3L). Perivascular fibrosis 

was also observed in old animals treated with 3-NP (Figure 3N). Interestingly, pre-treatment with 

tBHQ (PreC group) increased fibrosis in old animals (Figure 3P), but not in the PreC adult group 

(Figure 3O), which maintained a similar appearance to their own controls.  

 

3.3 Cardiac remodeling 

Myocardium extracellular matrix (MEM) damage and loss are important features of cardiac 

remodeling associated with age. Metalloproteinase-2 (MMP-2) content in its latent (Figure 4C) and 

active forms (Figure 4D) were evaluated in all groups. Active MMP-2 basal levels were higher 

(p<0.001) in heart tissue from old control rats (Figure 4B) than in control adult rats (Figure 4A). 

The active form increased up to 50% (p<0.001) after 3-NP treatment only in adult hearts, but did 

not decrease with tBHQ-preconditioning. 

Since collagen alterations have been related with MEM changes, collagen-III content was also 

evaluated. As shown Figures 4A and B, collagen-III increased (p<0.001) in old control hearts in 

comparison with control adult hearts, thus corroborating that aging heart undergoes fibrotic 

remodeling. 3-NP-treatment exacerbated up to 10 times collagen-III content in adult hearts (Figure 

4E, p0.001), and tBHQ-preconditioning decreased those levels (Figure 4A, p0.001). These 

results correlated with the myofibrils organization changes observed before (Figure 3E).  On the 

other hand 3-NP-treatment increased collagen-III levels by 60% in older animals compared to their 

own control; this was partially prevented by tBHQ preconditioning (Figures 4B and E). These 

results show that the cardiac response to 3-NP-induced damage and to tBHQ-pretreatment differs 

among adult and older individuals. 
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3.4 Oxidative stress damage markers  

In order to correlate the previous response with oxidative damage, protein and lipid oxidation, along 

with GSH levels were determined. Figure 5A shows that 3-NP-treatment augmented oxidized 

proteins (p<0.01) and lipid peroxidation (Figure 5B, p<0.001) in hearts from adult rats, but did not 

exert any effect on hearts from aged rats (Figure 5A and 5B). On the other hand, tBHQ 

preconditioning produced a slight decrease, although not significant, in the lipid peroxidation of 

adult hearts in comparison with aged hearts (Figure 5B). However, in both aged groups, tBHQ-

preconditioning increased significantly protein oxidation (Figure 5A). GSH content was lower in 

control aged hearts than in hearts from control adult animals (p<0.05; Figure 5C); 3-NP and PreC 

adult groups hearts had similar GSH values than their age controls, but tBHQ-preconditioning 

diminished GSH content in hearts from old rats (p<0.05) compared to 3-NP-treatment. These 

results suggest that sustained oxidative stress during the aging process reaches a threshold that 

cannot be surpassed by 3-NP action.  

  

3.5 Nrf2 nuclear translocation  

To determine if the different oxidative stress response stimulated by 3-N-treatment in hearts from 

adult and elderly rats was related with changes in Nrf2 regulation, we evaluate its expression and 

localization in nucleus and cytosol under the different treatments. Western blot analysis showed that 

Nrf2 levels in cardiac homogenates were similar between adult and old animals (Figures 6A and B).  

Nuclear Nrf2 content significantly diminished (p0.01) in the 3-NP adult group as compared with 

the control and tBHQ adult groups, and was recovered (p0.001) in the PreC group (Figures 6C 

and E).  Conversely, only 3-NP augmented Nrf2 levels (p0.05) in the nucleus of aged hearts 

(Figures 6D and E).  These results indicate that although Nrf2 expression is maintained during 

aging, efficient translocation depends on the stimulus.  Besides, tBHQ exerts a different regulation 

in young and in old individuals.  
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3.6 Nrf2-ARE binding efficiency in adult and aged hearts 

Nuclear extracts from adult and aged hearts were used to evaluate Nrf2 binding to ARE (antioxidant 

response element) under the different experimental conditions (Figure 7A). Nrf2-ARE complex 

decreased in the 3-NP group (p0.05) from adult hearts in comparison with the control and the 

tBHQ groups (Figure 7B), but was recovered in the PreC group (p0.01) in relation with 

augmented Nrf2 nuclear translocation (Figures 6C and E) and with -glutamylcystenyl synthetase 

(-GCS, p0.05) and glutathione S-transferase (GST, p0.001) enhanced expression (Figures 7C, D 

and E).  Conversely, Nrf2 binding to its consensus motif decreased in hearts from all old-rats 

groups, being lower even than in the adult control group (Figure 7B). Therefore, Nrf2 nuclear 

translocation in old rats hearts is apparently not compromised (Figures 6D and E), but the 

transcription factor did not bind efficiently to its complementary sequence (Figure 7A), precluding 

the up-regulation of major target antioxidant enzymes, e. g. heme-oxygenase-1 (HO-1), GST and -

GCS (Figures 7E).  

 

4. Discussion 

Although HD is considered primarily a neurological disease, it has been proposed that it may be 

examined as a systemic disorder (Sassone et al., 2009; Van der Burg et al., 2009), because 

numerous periphery organs and tissues are affected in these patients (Phan et al., 2009; Mielcarek et 

al., 2015). Even more, molecular mechanisms related to HD progression have been found not only 

in brain, but also in several tissues. In this respect, dilated cardiomyopathy has been observed in HD 

patients at both early and late stages of neuronal degeneration.  Accumulation of adenine nucleotide 

metabolites in the serum of this patients correlated with cardiac dysfunction and impaired 

nucleotide metabolism in symptomatic HD mice (Toczek et al., 2016a; Toczek et al., 2016b).  Other 

studies have associated HD pathophysiology with increased oxidative stress (Gu et al., 1996; Sapp 

et al., 1997; Foguem and Kamsu-Foguem, 2016).  N-Acetyl-L-Cysteine (NAC) decreases ROS 

production in cells expressing polyQ and preserves their viability (Vidoni et al., 2016).  Indeed, 
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high lipid peroxidation and low GSH levels in  HD patients’ plasma have been reported as reliable 

markers of the progression of this disease (Stoy et al., 2005; Klepac et al., 2007). 

Administration of the mitochondrial neurotoxin 3-NP mimics many pathological characteristics in 

HD. It induces caudate-putamen lesions, increases oxidative stress leading to neuronal loss and 

reactive gliosis in various animal models like rats (Beal et al., 1993) and primates (Brouillet et al., 

1999, Lee and Chang, 2004; Browne and Beal, 2006). The use of 3-NP as a pharmacological model 

of HD in animals have several advantages; it reproduces the pathophysiology observed in patients 

(Mehan et al., 2017), it easily cross the blood-brain barrier when administered systemically 

(Stavrovskaya et al., 2016) and its main action has been related with mitochondrial dysfunction, in 

particular with complex II inhibition and ROS generation (Liot et al., 2009). 

Early studies in young and adult rodents showed that acute 3-NP-treatment promoted cardiac 

morphological changes, characterized by sarcomere disorganization and fibrosis (Gabrielson et al., 

2001), M-bands disruption (Hernández-Echeagaray et al., 2011), along with increased 

vasodilatation (Castillo et al., 1994) and bradycardia (Hong et al., 1990).  Here, we found that 3-

NP-treatment induces myofibrils disorganization only in adult hearts (Figure 3). Interestingly, heart 

function was preserved in both age groups (Table 1). Discrepancies between the damage observed 

in the former studies and ours might be due to the higher doses of 3-NP previously used (e.g. 75-

100 mg/Kg). However, it is important to specify that in our model, the animals developed HD 

neurological characteristics related to the late stage of the disease (Silva-Palacios et al., 2017). 

At the cellular level, 3-NP-treatment produced oxidative damage in adult heart (Figure 5), 

confirming the concept that stresses and noxious influences exert their effects first at the molecular 

or biochemical level. Interestingly, such damage was only observed in adult animals but not in aged 

individuals (Figure 5).  

Lately hormesis has gained special attention during the aging process (Luna-López et al., 2014). 

Hormesis is defined as “a process in which exposure to a low dose of a chemical agent or 

environmental factor that is damaging at higher doses induces an adaptive beneficial effect on the 
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cell or organism” (Calabrese and Baldwin, 2003; Rattan, 2006; Calabrese, 2008; Mattson, 2008;  

Hoffmann, 2009; Calabrese et al., 2010; Holmström and Finkel, 2014). Under certain 

circumstances, low levels of reactive oxygen species (ROS), which are able to modify redox state, 

may induce an hormetic response by activating the survival and antioxidant response, that may be 

beneficial in the long term (Luna-López et al., 2010; Pan et al., 2011; Luna-López et al., 2014). In 

this sense, our results suggest that an hormetic response might have been established in aged hearts, 

having undergone sub-chronic oxidative stress throughout life. Sustained oxidative stress and 

antioxidant response might have reached a threshold that cannot be surpassed by 3-NP action 

(Figure 5). In these regard, Constantini et al. (2014) have proposed that such different an 

unexpected responses might result from the diverse types and degrees of stress exposure, to the 

cellular stage at which the stressful environment was experienced, or due to the duration of stressor 

exposure. 

3-NP administration has been associated with impaired mitochondrial function, e. g.  mitochondrial 

membrane potential depolarization (Nasr et al., 2003), cytochrome c release (Antonawich et al., 

2002) and ROS production (Liot et al., 2009). Besides the 3-NP specific inhibition of succinate 

dehydrogenase (Complex II) (Pandey et al., 2008), other mechanisms involved in 3-NP oxidative 

stress generation involve decreased mitochondrial Complex I (Pandey et al., 2008) and III activities 

(Orozco-Ibarra et al., 2016). Indeed, it has been proposed that complex II, regulates mitochondrial 

ROS production through a succinate-dependent interaction with complex I (Zoccarato et al., 2009; 

2011). Furthermore, in vitro studies have shown that in the presence of 3-NP, mitochondria 

generate superoxide from a site located between the ubiquinol pool and 3-NP-binding site in 

complex I (Bacsic et al., 2006). 

On the other hand, Meng et al., (2017) recently proposed a new concept called redox-stress 

response capacity (RRC) to describe cells ability to respond to oxidative stress; specifically to 

generate a dynamic response to maintain cellular redox homeostasis. Oxidative stress is considered 

a main feature during the natural aging process and a unifying mechanism in age-related 
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pathologies (Silva-Palacios, 2016); however, some researchers have found that oxidants might have 

a positive effect on regulating life expectancy (Rodriguez et al., 2011) or at least, that increased 

ROS do not accelerates the aging process (van Remmen et al., 2003).  It has also been suggested 

that oxidative stress effect in aging depends on specific environments or on particular stimulus 

(Salmon et al., 2010), and that under specific conditions the antioxidant genes transcriptional 

regulation might be regulated. Nrf2 has been recognized as the antioxidant response master 

transcriptional regulator and its loss or deregulation is associated with several pathologies and aging 

(Kumar et al., 2016). Controversial data exist on the mechanisms that lead to Nrf2 dysfunction in 

aged organisms, including inactivation of the factor in the cytosol, failure in its nuclear 

translocation or dysfunction on downstream gene expression mechanisms (Silva-Palacios et al., 

2016). In this regard, a recent study reports that Nrf2 nuclear import is impaired in elderly patients 

(Gounder et al., 2012). Others studies have determined that nuclear Nrf2 levels in aged rats 

subjected to moderate exercise, reach comparable values to those observed in young mice (Done et 

al., 2016) and that α-lipoic acid administration to old rats activates nuclear Nrf2 translocation (Suh 

et al., 2004). Our results add evidence to the proposal that Nrf2 activation pathway might remain 

intact in old animals (Figure 7), since we did not find differences between nuclear Nrf2 levels in 

hearts from adult or aged rats (Figure 6).  

Thus, the hormetic response observed in the aged rats might fit into the redox-stress response 

capacity (RRC) concept recently described (Meng et al., 2017).  Indeed, our findings highlight the 

priority studying Nrf2 activators as a reliable therapy to treat age-related diseases and makes 

mandatory to find the missing links in Nrf2 signaling and regulation during this life stage.  

 

5. Conclusion 

3-NP exerts differential effects in cardiac tissue depending on age. The lack of effects observed in 

old animals might be related to a previously gained  hormetic response in which the threshold for 

oxidative damage was reached and could not be surpassed in old animals. Our data showed that the 
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antioxidant response Nrf2 is functional in adult animals, but it is compromised in old animals 

(Figure 8), possibly due to deregulation of Nrf2 signaling cascade downstream components. 
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8. Figure Legends 

 

Figure 1. Scheme of treatments administrated to adults and older animals. Ct: Control group; 

ISS: isotonic saline solution. 

 

Figure 2. Effect of 3-NP treatment on cardiac function in adult and old animals. 

Representative echocardiographic images (Echo). IVS, interventricular septum; left ventricular 

dimension in end-diastole (red arrow); left ventricular dimension in end-systole (yellow arrow).  

 

Figure 3. Left ventricular cross-sections stained with H&E and Masson´s trichrome. 

Morphological changes of left ventricle were analyzed by light microscopy (Bars = 40x) in adult 

and old animals. Images are representative of at least three independent experiments for each group. 

 

Figure 4. Cardiac remodeling in hearts from adult and old animals. Representative Western 

blot images of metalloproteinase-2 (MMP-2) and collagen-III content in (A) adult and (B) old 

animals, normalized with GAPDH. (C) Densitometric analysis of the signal intensity obtained after 

chemiluminescent detection. The results were obtained from 3-4 independent experiments and the 

data are expressed as mean ± SD, 
a
p<0.001 vs. Ct, 

b
p<0.01, 

c
p<0.001, 

d
p<0.05 vs. 3-NP. The 

asterisks (*) indicate p<0.001 vs. Adult Ct. 

 

Figure 5. Markers of oxidative stress damage. (A) Evaluation of oxidized proteins in cardiac 

tissue homogenates. For adult animals, 
a
p<0.05, 

b
p<0.01, 

c
p<0.001 vs. Ct. For old animals, 

d
p<0.05 

vs. Ct. (B) TBARS in cardiac tissue homogenates, 
a
p<0.001 vs Ct. (C) GSH content. For adult 

animals 
a
p<0.05 vs. Ct and for old animals 

b
p<0.05 vs. 3-NP. Data represent the mean ± SD of 4 

independent experiments for each group. *p<0.01, **p<0.001 vs. Adult Ct.  
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Figure 6. Nrf2 in homogenates, cytosol and nucleus from adult and aged hearts.  Western blot 

images (A) and densitometric analysis (B) of Nrf2 content in total homogenates. Nrf2 content in 

nuclear (Nuc Fra) and cytosolic fractions (Cyt Fra) from adult animals (C) and from old animals 

(D). Densitometric analysis of Nrf2 content in Nuc Fra and Cyt Fra from adult and old animals (E).  

Results represent the mean ± SD of 3-4 independent experiments from each group.  
a
p<0.05, 

b
p<0.01 vs. Ct, 

c
p<0.001 vs. 3-NP. 

 

Figure 7. Nrf2 activation and oxidative response in adult and old animals.  (A) Representative 

autoradiograph of electrophoretic mobility-shift assay from adult and old hearts. The lanes 

represent: 1) Control, 2) tBHQ, 3) 3-NP and 4) PreC groups.  (B) Image analysis of Nrf2-DNA 

binding obtained by densitometry. Results represent mean ± SD of 3-4 independent experiments in 

each group. For adult animals 
a
p<0.05 vs. Ct, 

b
p<0.01 vs. 3-NP and  

c
p<0.001 vs. 3-NP for old 

animals. *p<0.001 vs. Adult Ct.  The Antioxidant enzymes content in adult (C) and in old (D) 

animals. (E) Densitometric analysis of antioxidant enzymes levels in adult and old animals. Results 

represent the mean ± SD of 3-4 independent experiments in each group. 
a
p<0.05, 

b
p<0.001 vs. Ct, 

c
p<0.01 vs. 3-NP. 

 

Figure 8. 3-NP exerts differential effects in cardiac tissue depending on age.  3-NP induces   

cellular redox imbalance due to the increase of mitochondrial ROS secondary to Complex II 

inhibition in heart tissue from adults animals.   Conversely, the cells from old animals maintain a 

pro-oxidant environment, with is not modified by the neurotoxin. In adult cells, Nrf2 is activated by 

tBQ, the oxidized product of tBHQ which induces the dissociation of Keap1/Nrf2 complex.  

Subsequent translocation and nuclear activation of Nrf2, correlated with increased antioxidant 

enzymes such as GST and γ-GSC in adults; while the activation of Nrf2 is compromised in old 

animals.  ROS, reactive oxygen species; GST, glutathione S-transferase; γ -GSC, gamma-glutamyl-

cysteine-synthetase; HO-1, heme-oxygenase-1; tBQ, tert-butylbenzoquinone; O2⋅﹣, superoxide anion 
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(blue ovals); H2O2, hydrogen peroxide (red ovals); Cys, cysteine; Maf, muscle aponeurotic 

fibrosarcoma; ARE/EpRE, antioxidant response element/electrophiles. 

 

Table 1. Structural and functional parameters from adult and old animals.  Data are the mean 

± SD of at least 3 different animals in each experimental group. The bold numbers indicate p<0.01 

vs. Ct Adult.  
a
p<0.05, 

b
p<0.01 vs. its own Ct. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Table 1 

 

 

 ADULT OLD 

Parameter Ct tBHQ 3NP PreC Ct tBHQ 3NP PreC 

Body Weight (g) 247 ± 8 260 ± 13 250 ± 9 242 ± 19 385 ± 33 305 ± 31
a 318 ± 26

a 341 ± 48 

Heart weight (g) 1 ± 0.2 1 ± 0.1 0.9 ± 0.1 1 ± 0.1 2 ± 0.4 1.1 ± 0.1
b 1.1 ± 0.1

b 1.2 ± 0.1
b 

HW/BW (g/Kg) 4 ± 0.4 4 ± 0.3 3.7 ± 0.6 4.3 ± 0.4 4.4 ± 1.14 3.6 ± 0.4 3.4 ± 0.6
a 3.7 ± 0.7 

Lung weight (g) 2 ± 0.1 2 ± 0.3 2 ± 0.3 2 ± 0.3 2.3 ± 0.8 2.1 ± 1.0
b 1.8 ± 0.5

b 2.03 ± 0.4 

LW/BW (g/Kg) 9 ± 1 8 ± 0.5 7 ± 1 8.4 ± 1.8 6.5 ± 2.9 7 ± 3.4 5.7 ± 1.0 5.9 ±0.9 

IVS (mm) 0.2 ± 0.01 0.2 ± 0.01 0.2 ± 0.01 0.18 ± 0.01
b 0.2 ± 0.02 0.2 ± 0.02 0.2 ± 0.01 0.2 ± 0.01 

LVDd (mm) 5.4 ± 0.3 5.1 ± 0.2 5.1 0.1 5.1 ± 0.06 5.2 ± 0.5 4.5 ± 0.2 4.8 ± 0.4 5.2 ± 0.6 

LVSd (mm) 3 ± 0.1 2.3 ± 0.5 2.6 ± 0.1 2.7 ± 0.2 2.6 ± 0.6 1.7 ± 0.4
b 2.1 ± 0.5

a 2.4 ± 0.5 

EF (%) 86 ± 2 90 ± 6 86 ± 3 86 ± 3 86 ± 8 94 ± 4 91 ± 4 90 ± 6 

FS (%) 48 ± 2 59 ± 2 49 ± 4 48 ± 3 53 ± 10 62 ± 11 56 ± 7 54 ± 8 

Heart rate (beats/min) 142 ± 6 127 ± 10 136 ± 2 143 ± 16 155 ± 22.8 137 ± 4.3 131 ± 18 145 ± 10.7 

Functional parameters (n=4) (n=4) (n=4) (n=3) (n = 6) (n = 3) (n = 3) (n = 3) 
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Highlights 

 

 

 

Chronic oxidative stress induces an hormetic response in heart tissue from old rats 

 

3-NP exerts differential effects in cardiac tissue depending on age 

 

    The antioxidant response mediated by NRF2 is compromised in old animals 
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