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Cells can respond to damage and stress by activating various repair and survival pathways. One of these
responses can be induced by preconditioning the cells with sublethal stress to provoke a prosurvival
response that will prevent damage and death, and which is known as hormesis. Bcl-2, an antiapoptotic
protein recognized by its antioxidant and prosurvival functions, has been documented to play an
important role during oxidative-conditioning hormesis. Using an oxidative-hormetic model, which was
previously established in the L929 cell line by subjecting the cells to a mild oxidative stress of 50 μM
H2O2 for 9 h, we identified two different transductional mechanisms that participate in the regulation of
Bcl-2 expression during the hormetic response. These mechanisms converge in activating the nuclear
transcription factor NF-κB. Interestingly, the noncanonical p50 subunit of the NF-κB family is apparently
the subunit that participates during the oxidative-hormetic response.

& 2013 Elsevier Inc. All rights reserved.
Mammalian cells can respond to damage and stress by activating
various repair and survival pathways. Preconditioning the cells to
sublethal stress is known to induce a prosurvival response that
prevents damage and death. Hence, as a consensus terminology
to unify the main mechanism that preconditioning and adaptive
responses have in common, the term hormesis has been proposed,
suggesting that exposure to low levels of stress will activate existing
cellular and molecular pathways that will enhance the ability of the
cell and organism to withstand more severe stress [1–3].

Every year many papers are published describing very different
molecules that protect cells against oxidative insults, hypoxic–
ischemic damage [4], oxygen and glucose deprivation [5], xeno-
biotic toxicity, etc. Most of the molecules analyzed improve
cellular survival by increasing Bcl-2 expression [6,7]. There are
also reports in which preexposure to sublethal stress creates an
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antiapoptotic environment that prevents cell death. This precon-
ditioning treatment generates tolerance or adaptation to oxidative
stress by induction of the overexpression of survival genes such
as Bcl-2 [8,9]. Interestingly, studies with transformed cells have
shown that molecules that inhibit NF-κB and the Akt/phosphati-
dylinositol 3-kinase (PI3K) pathway, such as xanthone derivates,
α-mangostin [10], curcumin [11], green tea polyphenols [12],
ellagic acid (a common component of berries) [13], fucoidan (a
sulfated polysaccharide) [14], osthole [15], and bromelain (obtained
from pineapple) [16], are reported to have therapeutic applications
in the treatment of cancer because they eliminate cellular defense
mechanisms, decrease Bcl-2 levels, and induce cell death.

Bcl-2 has been recognized for its cytoprotective, antioxidant,
and antiapoptotic functions [17–19]. Bcl-2 is also known to
increase reduced glutathione levels [20] and superoxide dismutase
and proteasome activity [21]. In addition to its protective activity,
Bcl-2 has been demonstrated to have a cell cycle inhibitory
function by retarding mammalian cell proliferation [22] and by
its ability to induce cellular senescence [23].
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One of the more studied and earliest described transduction
pathways during cell survival is PI3K/Akt/NF-κB/Bcl-2. Several
works have recognized the efficiency of the survival mechanism
to inhibit apoptosis induced by numerous stimuli such as UVB
radiation, H2O2 [24], low-density lipoprotein oxidation [25,26],
and others. This pathway has also been inhibited as a strategy
against several cancer types, with good results [27–29].

NF-κB is a transcription factor consisting of five different
subunits (RelA, p65, RelB, cRel, p52, and p60), which are able to
interact with one another and form homo- or heterodimers,
putting forward their capability to interact with various promo-
ters, thus transactivating multiple genes [30,31]. NF-κB is induced
by stimuli such as ROS, UV radiation, proinflammatory cytokines,
lymphokines, and growth factors [32–35].

Therefore we propose that most of these prosurvival or
protective molecules have a common mechanism of action by
activating a hormetic response by modifying the cellular redox
state. Recently we established a model to study the oxidative-
conditioning hormesis response (OCH) by conditioning the cell
line L929 for 9 h with 50 mM H2O2 [36]. Cells subjected to OCH and
then reexposed to severe oxidative insult (H2O2 200–400 mM)
presented a significantly improved survival rate of 70–80%, which
was abrogated when Bcl-2 was inhibited or silenced [36]. Hence
the aim of this work was to determine the transductional events
that regulate Bcl-2 overexpression as part of the mechanism of
action during the oxidative-conditioning hormetic response.
Experimental procedures

Chemicals

All chemicals and reagents were of the highest analytical grade
and most of themwere purchased from Sigma (St. Louis, MO, USA).
Reagents obtained from other suppliers are detailed in the text.

Cell culture

Mouse L929 lung fibroblasts were cultured at 37 1C in an
atmosphere of 95% air and 5% CO2 as described elsewhere [37].

Cellular viability and oxidative-conditioning hormesis

L929 cells were seeded at 1�105 cells/well into 24-well plates
(Corning, Acton, MA, USA) and were treated with 50 μM H2O2 for
9 h, to induce the OCH response, and it was compared in some
experiments with a nonhormetic condition of 200 μM H2O2 as
described previously [36]. To analyze PI3K, protein kinase C (PKC),
and Akt involvement in Bcl-2 overexpression during the hormetic
response, cells were incubated for 30 min with their inhibitors,
wortmannin, 100 μM (PI3K); chelerythrine, 5 μM (PKC); and Akt
inhibitor II, 10 μM (Akt), before the OCH treatment.

Cell survival

Cell survival was quantified by trypan blue assay, counting the
living cells in a hemocytometer under a phase-contrast optical
microscope, as described previously [23].

Western blot analysis

Kinase activation was evaluated by determining the total and
phosphorylated forms as an early event in Bcl-2 overexpression
during OCH (15, 30, 45, 60, 90 min). Bcl-2 was also evaluated
after the OCH treatment in cells pretreated for 30 min with their
inhibitors, wortmannin, 100 μM (PI3K); chelerythrine, 5 μM (PKC);
and Akt inhibitor II, 10 μM (Akt). To demonstrate that specificity
to NF-κB, Bcl-2 expression was evaluated after the hormetic
treatment in cells that were pretreated 1 h with 30 μM SN50, a
cell-permeative specific inhibitor of NF-κB translocation.

Whole-cell lysates were prepared using RIPA buffer (50 mM
Tris–HCl, pH 8.0, 120 mM NaCl, 0.5% NP-40, 100 mM NaF, 0.2 mM
NaVO3, 1 μg/ml aprotinin, 1 mM phenylmethanesulfonyl fluoride,
1 μg/ml leupeptin). Cell homogenates were incubated at 4 1C for 5–
10 min and then centrifuged at 22,000g, 4 1C, for 20 min. Protein
concentration was determined in the supernatant using a com-
mercial Bradford reagent (Bio-Rad, Hercules, CA, USA) [39]. Total
proteins were separated by 13% SDS–PAGE and transferred to
polyvinylidene difluoride membranes (Invitrogen) and probed
with specific antibodies: anti-Bcl-2, anti-PI3K, anti-p-PI3K, anti-
Akt, anti-p-Akt, anti-PKC-α, or anti-p-PKC-α (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA). Actin was used as a loading control.
Membranes were washed three times with Tris-buffered saline–
Tween and incubated with a horseradish peroxidase-conjugated
anti-mouse IgG secondary antibody (Pierce, Rockford, IL, USA) for
1 h. After three washes, the blots were developed using a com-
mercial chemiluminescence reagent (Supersignal; Pierce).

Electrophoretic mobility-shift assay (EMSA)

Nuclear extracts were prepared with Igepal CA-630 according
to Gómez-Quiroz et al. [38]. Protein concentration was determined
in the supernatant using a commercial Bradford reagent (Bio-Rad)
[39]. NF-κB DNA-binding activity was assayed using consensus
oligonucleotides. The NF-κB sequence 5′-AGTTGAGGGGACTTTCC-
CAGGC-3′ (Promega, Madison, WI, USA) was used as a probe and
was labeled with T4 polynucleotide kinase (USB, Cleveland, OH,
USA) and [γ-32P]ATP (3000 Ci/mmol; MP Biomedical, Irving, CA,
USA) and purified using Bio-Spin 30 chromatography columns
(Bio-Rad). The reaction mixture contained nuclear protein extract
(20 μg) in 5 μl of incubation buffer (50 mM Tris–HCl, pH 7.5,
200 mM NaCl, 5 mM EDTA, 5 mM β-mercaptoethanol, 20% gly-
cerol), 1 μg dI–dC, and 32P-labeled probe.

For the supershift assay, a 200 nM concentration of polyclonal
anti-p65, anti-p52, or anti-p50 antibodies (Santa Cruz Biotechnol-
ogy) was added to the reaction mixture for 30 min. The reactions
were electrophoresed on 6% polyacrylamide native gels. The
gels were exposed in a Storage Phosphor Screen (Amersham
Bioscience, Arlington Heights, IL, USA) and after 24 h were
analyzed in a variable-mode imager (Typhon 9400; Amersham
Bioscience) using the software ImageQuant TL (Amersham
Bioscience).

Immunofluorescence experiments

Treated L929 cells were fixed with 4% paraformaldehyde and
then incubated in blocking buffer (2% bovine serum albumin, 0.2%
nonfat milk, and 0.2% Triton X-100 in PBS). Cells were washed and
incubated with the primary antibody anti-p50 (Santa Cruz Bio-
technology, dilution 1:50), followed by another incubation with
the secondary antibody (Alexa 680-conjugated anti-rabbit, dilu-
tion 1:200) and with DAPI (10 mM), to stain the nucleus. Slides
were mounted with fluorescence mounting medium (Dako Cyto-
mation, Glostrup, Denmark). Images were obtained with a multi-
photon confocal LSM 780 NLO microscope (Carl Zeiss, Jena,
Germany)

Data analysis

Data are reported as the means7SD for at least three inde-
pendent experiments performed in triplicate. ANOVA followed by
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the Tukey test was used to compare data. A 0.05 level of prob-
ability was used as a minimum criterion of significance.
Results

PI3K, Akt, and PKC regulate Bcl-2 expression during the
hormetic response

Previously we reported the role played by Bcl-2 during the
hormetic response induced by mild oxidative stress [36]. To deter-
mine the signaling mechanism that regulates Bcl-2 expression,
here we evaluated the participation of the main kinases known for
their contribution to cell survival against oxidative stress.
OCH
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PI3K, Akt, and PKC-α phosphorylation was monitored at short
time points after OCH treatment (50 mM H2O2) (Fig. 1). When PI3K
and p-PI3K were evaluated, a fast activation was observed by the
first 15 min after OCH (more than 5-fold increase compared with
the untreated cells, po0.001), and then another activation of the
same magnitude was observed at 120 min (po0.001; Fig. 1A).
In the case of Akt phosphorylation, an increase of more than 7-fold
was observed in p-Akt (Ser 473) after 60 min of OCH (po0.001),
but this phosphorylation decreased to 2-fold against the control at
120 min (po0.05), as shown in Fig. 1B. PKC-α presented a com-
pletely different pattern of activation, with intermittent augmenta-
tion of p-PKC-α. At 15 min p-PKC-α increased 3.5-fold against the
control (po0.01), whereas at 45 and 60 min the increment was
5- and 3-fold, respectively (po0.01); last, at 120 min the phos-
phorylation rose by more than 14 times (po0.001; Fig. 1C).
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To demonstrate the direct participation of those kinases in
OCH-induced Bcl-2 regulation, cells were incubated for 30 min
with the corresponding inhibitor for each kinase (wortmannin for
PI3K, chelerythrine for PKC, and Akt inhibitor II for Akt), and Bcl-2
protein levels were evaluated by Western blotting at 9 h. Our
results showed a 60% increase in Bcl-2 levels after the OCH
treatment (po0.05), whereas when cells were pretreated with
the kinase inhibitors no increment in Bcl-2 was observed. When
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300 mM H2O2, Bcl-2 levels decreased 90% compared to untreated
cells (Fig. 2A). To verify the kinases' participation in the survival
response during OCH, cellular viability was evaluated under the
same conditions mentioned before. As expected, cells treated for
9 h with 50 μM H2O2 (OCH) were 100% viable, and no difference
with control cells was observed, whereas cells pretreated with the
kinase inhibitors showed decreased viability by 60% (po0.01)
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after OCH. A 75% decrease in viability was observed at 300 mM
H2O2 (Fig. 2B). The cellular morphology, analyzed by optic micro-
scopy, agrees with the viability results. The cultures pretreated
with the kinase inhibitors showed visible damage and cell demise
(Fig. 2C).

NF-κB regulates Bcl-2 expression

Bcl-2 is a highly regulated gene; its promoter encompasses two
response elements for NF-κB, a redox-regulated transcription
factor that is known to be activated during oxidative stress
response and is associated with cell survival. To determine if
NF-κB activation induces Bcl-2 expression after OCH, cells were
pretreated for 30 min with 30 μM SN50, a cell-permeative specific
inhibitor of NF-κB translocation, before the OCH treatment. Bcl-2
levels were determined after 9 h, and as expected, Bcl-2 levels
increased after OCH, but this increase was abrogated when SN50
was used (Fig. 3). The same effect was observed when the cells
were treated with 300 mM H2O2 (po0.05), thus confirming
the role of NF-κB in increasing Bcl-2 in the survival response
during OCH.

PI3K/Akt and PKC activate NF-κB during hormesis response

Our results are consistent with other reports that have
described several transduction pathways known to regulate Bcl-2
expression, such as PI3K/Akt–NF-κB and PKC-α–NF-κB. However, it
was still important to demonstrate that NF-κB was being activated
and actually binding to the DNA during the hormetic response
developed by OCH treatment. Fig. 4A shows a representative NF-
κB EMSA at 1 and 2 h of OCH stimulus. NF-κB DNA binding was
increased fivefold at 2 h compared to untreated cells (po0.01).
To verify the participation of PI3K, Akt, and PKC-α in NF-κB
activation during OCH, their activity was abrogated by pretreating
the cells with their respective pharmacological inhibitors. Cells
were then subjected to the OCH for 2 h and NF-κB activation was
evaluated. The results in Fig. 4B show that when the kinases were
inhibited, NF-κB binding to DNA significantly decreased (po0.01),
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suggesting that PI3K, Akt, and PKC-α activate NF-κB in response to
OCH treatment and that all of them participate in Bcl-2 expression
regulation (Fig. 2A).
p65 does not participate in Bcl-2 transcriptional regulation
but p50 does

NF-κB is a transcription factor that can be composed of various
subunits such as p65, p52, p50, RelA, and RelB, which can interact
with one another forming homo- or heterodimers. Of these, the
most studied in processes related to cell survival and antioxidant
response is subunit p65. To confirm p65 participation during OCH,
an EMSA and a supershift assay against p65 were performed.
Surprisingly, as presented in Fig. 5, the p65 band did not show a
substantial delay in its electrophoretic mobility during OCH
treatment, whereas a significant retardation is observed during
TNF-α treatment, which was used as a positive control. Hence, to
find out which NF-κB subunit was involved in Bcl-2 expression
enhancement during the antioxidant hormetic response, we
performed supershifts against the three most important NF-κB
subunits: p50, p52, and p65. Fig. 6A shows that p50 was the
subunit that retarded its electrophoretic mobility, and two bands
with different molecular weights were observed in the EMSA,
suggesting that the low-weight band might represent p50 homo-
dimers, whereas the high-weight band might correspond to p50
heterodimers with another NF-κB subunit, such as RelA or RelB
(Fig. 6A). Finally, to corroborate p50 participation as part of the
hormetic response, its nuclear translocation during OCH treatment
was determined with confocal microscopy, as illustrated in Fig. 6B.
The upper row shows the untreated cell photomicrographs, in
which p50 (stained in red) can be observed in the cytoplasm,
whereas in the OCH-treated cells (lower row), p50 can be seen in
the nucleus, hence confirming p50 participation and translocation.
Discussion

In this work we have established two different signaling
mechanisms that participate in the regulation of Bcl-2 expression
during the hormetic response. The hormetic model or OCH was
previously established in the L929 cell line [36], subjecting the
cells to a mild oxidative stress (50 μM H2O2) for 9 h.

The first mechanism involves PI3K, Akt, NF-κB, and Bcl-2 and
has been described before as part of the survival and antioxidant
response against several toxic stimuli in various cell types
[27,39,41]. The PKC signaling pathway, and mostly the PKC-α
isoform, regulates a wide range of vital biological functions and
processes, such as cell proliferation, apoptosis, differentiation,
migration, and adhesion [42], and it is also involved in oxidative
stress and the inflammatory responses [43]. PKCs contain unique
structural features that are susceptible to oxidative modifications.
The N-terminal regulatory domain contains zinc-binding,
cysteine-rich motifs that are readily oxidized by hydrogen per-
oxide; when oxidized, the regulatory domain autoinhibitory func-
tion is compromised and, consequently, cellular PKC activity is
stimulated [44]. PKC-α phosphorylates NF-κB/p65 in U1242 glio-
blastoma multiforme cells [45] and confers resistance against
cisplatin-induced apoptosis in prostate cancer cells; this interac-
tion elicits a mechanism resulting in Bcl-2 posttranslational
stabilization and elevated expression [46]. Our results show an
oscillating pattern response with time for PKC-α, which might be
explained by the fact that PKC-α is known to regulate various
oxidative stress processes, such as the induction of heat shock
proteins, particularly HSP70 [47]; JNK activation to inhibit apop-
tosis during the reoxygenation process [48]; and the antioxidant
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response through Nrf2 [49,50]. However, it would be interesting to
deeply explore what is inducing this oscillating pattern.

In our hormetic model, there is an increase in PI3K/Akt acti-
vation, which correlates with an enhancement in NF-κB activation
and a further increment in Bcl-2 expression; this was confirmed
when the pharmacological inhibitors for PI3K and Akt (wortman-
nin and Akt inhibitor II, respectively) were used, because the
prosurvival response was abrogated. Wortmannin and Akt inhi-
bitor II have been successfully used in preconditioning studies and
have shown a high effectiveness at decreasing PI3K and Akt
activity [51–54]. However, these inhibitors are not isoform specific,
hence to determine the inhibition of kinase-specific isoforms more
studies are needed.

The second mechanism, which involves PKC/NF-κB/Bcl-2, was
earlier described by Choi and co-workers [55] as an essential
signaling cascade participating in preconditioning myocardial cells
against stroke, in a process involving ROS. In the same way, we
demonstrated that both NF-κB activation and Bcl-2 expression
increased in a PKC-α-dependent manner and were abrogated
when chelerythrine, a PKC-specific inhibitor, was used. However,
because chelerythrine inhibits all PKC isoforms [51,52,56,57], it
cannot be assured that the effect seen here is only and specifically
due to PKC-α isoform inhibition.

Interestingly, both pathways converged in NF-κB, a transcrip-
tion factor known to participate during cellular responses to
oxidative challenges. NF-κB, as well as its repressor IκB, encom-
passes biochemical elements that respond to changes in redox
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state [58,59]. Furthermore, it has been reported that NF-κB is
involved in the regulation of genes associated both with survival
[60,61] and with antioxidant response [62,63].

Our results show that NF-κB takes part in Bcl-2 expression
regulation because when this transcription factor was inhibited
with SN50, Bcl-2 expression dropped off. This result is supported
by several reports in which the various response elements for
NF-κB in Bcl-2 promoter have been described [64,65].

Even though NF-κB's most studied or canonical pathway,
known to be involved in survival and anti-inflammation
responses, entails a p65–p50 heterodimer [66], our results did
not head in that direction. Using electrophoretic mobility-shift
assays and immunocolocalization by confocal microscopy, we
identified the components of the transcription factor NF-κB that
participate in the hormetic response induced by H2O2. Our results
confirmed p50 subunit involvement, either in homodimeric or in
heterodimeric form, as shown by the two high-molecular-weight
bands in the supershift assay in Fig. 6A. Moreover, our data
showed that there was no activation of p65 and p52 subunits.
These results suggest that Bcl-2 expression enhancement during
OCH is not regulated by the canonical NF-κB pathway.

Recently, a noncanonical NF-κB pathway has been proposed
that is atypical because the active dimer is a p50–p50 homodimer
[67]. Our results support this proposal and it is supported by other
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reports suggesting that the kinases responsible for IκB degradation
are inhibited by oxidative stress [68–71]. The former implies that
NF-κB subunits that are regulated by IκB, such as p65, RelB, and
cRel, do not participate in oxidative-related processes. Further-
more, it has been reported that the NF-κB canonical pathway does
not take part in Bcl-2 transcriptional regulation in response to
oxidative stress and that the mechanism involved in Bcl-2 expres-
sion is a noncanonical one, with p50 as a main player [72].
Nevertheless, the possible function of these p50 heterodimers still
needs to be explained. There are at least two possible explana-
tions. One is that p50 might be required to interact with other
members of the NF-κB family; although in our hands none of those
members were detected with the conventional supershifts, possi-
bly because of their low concentration. The second possibility is
that the upper part of the p50 supershift complex might be formed
by p50 heterodimers along with a coactivator protein needed for
the transcription process. One of the preferred candidates for the
coactivator is the Bcl-3 protein, which was proposed by Cristofa-
non and his group [72] as a fundamental part of a transcriptional
complex that regulates Bcl-2 expression in response to oxidative
stress, but this remains to be confirmed in our experimental
model.

All the previous suggests that in response to an oxidative
hormetic challenge cells might respond by activating two different
signaling pathways, which conclude in the overexpression of a
broad-spectrum survival protein such as Bcl-2, as represented in
Fig. 7. Interestingly, our results showed that the hormetic response
involves transcription factors that participate in both the prosur-
vival and the antioxidant mechanisms, and these results agree
with some recent reports in which Bcl-2 augmentation is regu-
lated by Nrf2, a transcription factor known for its role during
antioxidant and phase II responses [73], putting forward the idea
that the cellular response to toxins, damage, and stress might
simultaneously have prosurvival and antioxidant components.

In conclusion, the PI3K/Akt/NF-κB/Bcl-2 pathway participates
in the mechanism that activates the hormetic response induced by
mild oxidative stress, and p50 is the particular NF-κB subunit that
regulates Bcl-2 expression (Fig. 7). It still remains to be determined
which other subunits or molecules might interact with p50 to
form the heterodimers that were observed in our assays. This is
important because the results presented here might contribute to
the design of new therapeutic strategies to counteract cellular
damage when oxidative stress is involved during cancer, aging,
and neurodegenerative diseases.
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