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Abstract Complex systems from different fields of knowledge often do not allow a mathematical description or
modeling, because of their intricate structure composed of numerous interacting components. As an alternative
approach, it is possible to study the way in which observables associated with the system fluctuate in time. These time
series may provide valuable information about the underlying dynamics. It has been suggested that complex dynamic
systems, ranging from ecosystems to financial markets and the climate, produce generic early-warning signals at the
“tipping points,” where they announce a sudden shift toward a different dynamical regime, such as a population
extinction, a systemic market crash, or abrupt shifts in the weather. On the other hand, the framework of Self-
Organized Criticality (SOC), suggests that some complex systems, such as life itself, may spontaneously converge
toward a critical point. As a particular example, the quasispecies model suggests that RNA viruses self-organize their
mutation rate near the error-catastrophe threshold, where robustness and evolvability are balanced in such a way that
survival is optimized. In this paper, we study the time series associated to a classical discrete quasispecies model for
different mutation rates, and identify early-warning signals for critical mutation rates near the error-catastrophe
threshold, such as irregularities in the kurtosis and a significant increase in the autocorrelation range, reminiscent of 1/f
noise. In the present context, we find that the early-warning signals, rather than broadcasting the collapse of the system,
are the fingerprint of survival optimization.
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Introduction

Complexity theory offers a new paradigm to study intricate
compound systems in many different fields of knowledge,
such as physics, biology, physiology and ecology. These
complex systems are composed of many mutually interacting
components that induce new emerging properties in the whole
system that are not present in the individual components. One
particular interesting example from ecology is socially
organized animals, such as ant colonies (Solé et al., 1993a,
1993b; Miramontes, 1995) or starling flocks (Ballerini et al.,

2008; Cavagna et al., 2010), where each individual animal
interacts directly only with its nearest neighbors. These local
interactions appear to be ajusted in such a way that somehow
long-range correlations emerge, which permit the group to
act as an organized social “super-organism.” Interestingly, the
emergence of such long-range correlations and the coex-
istence of different scales appear to be universal features for
complex systems in many fields of knowledge, suggesting
that a unifying mathematical framework might exist that
describes this phenomenology. One example of such a
unifying concept is auto-organized criticality, which states
that some complex systems converge toward a critical state
where long-range correlations emerge spontaneously (Kauff-
man, 1995; Bak, 1996).

On the other hand, the apparent similarities between
different complex systems could be an illusion and future
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understanding might demand a detailed analysis and model-
ing for each specific case. Often, however, these complex
systems are too complicated to allow for a precise
mathematical description and it is desirable to develop
alternative approaches that overcome this limitation. One
way out is to study the signals or the time series that the
system produces, i.e. the way in which a particular observable
associated with the system fluctuates in time. The main
assumption is that the statistical properties of these series
provide information about the underlying dynamics of the
system and — more particularly — about its possible critical
states (Fossion et al., 2010; Landa et al., 2011). Recently, it
has been proposed that complex systems from many different
fields of knowledge produce in their time series early-
warning signals that are generic, and that are able to predict
an impending collapse or phase transition of the system
(Scheffer et al., 2001, 2009, 2012; Carpenter et al., 2011).
Where at first sight it might appear strange that ecological
systems such as populations and physical systems such as the
global climate produce similar signals, it results that near a
critical point the dynamics of a complex system has universal
properties, regardless of the differences in the details of each
system. One example of such a universal property is that after
a perturbation complex systems in a critical state take longer
to return to their equilibrium state. This phenomenon is called
critical slowing down, which can be recognized as an increase
in autocorrelation and variance of the associated time series.
This leads to a “reddening” (a favoring of the lower
frequencies) of the corresponding Fourier power spectrum.
Other characteristics are flickering and an increased skewness
of the distribution function.

Evolving populations are examples of a complex system,
where robustness and evolvability—that is, a balance between
resisting and allowing change in the internal states to adapt to
different internal and external conditions— are characterized
by multiple spatial and time scales (Lenski et al., 2006). In the
context of populations of cells, these properties are
intrinsically related with an optimal critical state at which
cells regulate and control their phenotype (Aldana et al.,
2007). This dynamics can be studied theoretically within the
framework of the quasispecies model, where one finds an
error-catastrophe threshold that is associated with an
optimization of the genetic variability of the species (Bull et
al., 2005), and which is observed experimentally in RNA
viruses (Crotty et al., 2001). Briefly, the error-catastrophe
model states that the transfer of genetic information between
subsequent generations in an individual population depends
on the mutation rate μ. More specifically, there is a critical
mutation rate μcrit below which genetic information is passed
on between generations but for which the population does not
evolve in time. Conversely, in populations with mutation rates
higher than μcrit, evolution is promoted, but there is a loss of
hereditability between the different generations. Given the
fact that viruses proliferate when they evolve more rapidly
than the immune system of their host can recognize them,

RNA viruses might thus self-organize and converge toward
this critical mutation threshold μcrit where both functions of
robustness and evolvability are optimized. The quasispecies
model and the notion of criticality inspire antiviral treatments
in two ways. On the one hand, a treatment that enhances the
mutation rate pushes the virus over the error threshold after
which it automutates into a harmless entity, an effect wich is
also called “lethal mutagenesis” or “mutational meltdown”
(Eigen, 2002; Anderson et al., 2004; Jonsson et al., 2005). On
the other hand, an attenuation of the mutation rate converts
the virus in a less adaptable species, which makes it unable to
run ahead of the innate immune response or to circumvent
vaccination protection (Lauring and Andino, 2010).

The quasispecies model has been extensively studied in the
literature and additional interesting mechanistic and biologi-
cal properties have emerged (Wilke et al., 2001). Phase
transitions have been reported in the context of the
quasispecies model (Solé et al., 1999b; Solé, 2003). However,
traditionally, the quasispecies model is defined in terms of
differential equations, which only permit to study the smooth
time evolution of the population mean of the quasispecies.
The time series of internal fluctuations of the population can
be taken into account by discretizing the system and by using
difference equations (Solé et al, 1999a, 1999b; Solé, 2003).
However, to date, the full potential of the time-series
approach has not been exploited, and in particular, the
model has not been studied from the perspective of early-
warning signals. Our main hypothesis is that the statistical
properties of time-series measurements can be an indicator for
identifying critical regions in a dynamical sense. Two
advantages of this approach are the following: 1) we
overcome the need of having detailed mechanistic informa-
tion of the systems; and 2) this view constitutes an immediate
link with experimental data of complex systems. Early-
warning signals identifying critical points such as tipping
points are usually interpreted as “negative” signals, which
indicate that the system is becoming increasingly unsustain-
able. In the present contribution, however, we will identify
early-warning signals for time series of the quasispecies
model at the error threshold. Thus, in our case, early-warning
signals rather serve as “positive” signals and indicate that the
system has optimized its possibilities of survival. The early-
warning signals we find are discontinuities in the behavior of
distribution moments such as variance, kurtosis and skew-
ness. Additionally, whereas the framework of early-warning
signals usually focuses on a reddening of the power spectrum,
which corresponds to an increase in strength of the
autocorrelations, we argue that near the error threshold the
power spectrum approximates a P(f)~1/f behavior, which
implies a maximization of the range of the autocorrelations
(Keshner, 1982; Fossion et al., 2010). Overall, these findings
are in agreement with our suggestion in a previous article that
a 1/f power spectrum can provide a fingerprint for the critical
state of dynamical systems undergoing a phase transition
(Landa et al., 2011).
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Materials and methods

A discrete quasispecies model

The quasispecies model is a description of the process of the
Darwinian evolution of self-replicating entities, and is used to
model the competition between variety-increasing processes
such as mutation as well as variety-reducing effects such as
genetic drift and selection (Bull et al., 2005). Put simply, a
quasispecies is a heterogeneous group or cloud of related
genotypes that exist in an environment of nonzero mutation
rate μ, where a large fraction of offspring is expected to
contain one or more mutations relative to the parent. This is in
contrast to the biological concept of a species, which from an
evolutionary perspective corresponds to a homogeneous
group based on a single and stable genotype, of which most
of the offspring will be genetically accurate copies. The
quasispecies model is useful mainly in providing a qualitative
understanding of the evolutionary processes of self-replicat-
ing macromolecules such as RNA or DNA or simple asexual
organisms such as bacteria or viruses (viral quasispecies). In
the work by Solé et al. (1999a, 1999b, 2003), a computational
simplified quasispecies model is proposed, based on the
Moran evolutionary model. Here, a set of rules dictates how a
population of individuals, corresponding to different geno-
types, evolves discretely in time. The total number of
individuals in the population remains constant, but the
number of individuals corresponding to specific genotypes
can fluctuate. Also, subsequent generations are allowed to
overlap. The genotypes are represented as bit-strings, that is,
binary sequences of 1's and 0s with a length ν = 15, where
each genotype is associated with a specific fitness. Based on
this first approach, we propose an alternative recipe for the
dynamical population model, see Fig. 1, based on the even
more common Wright-Fisher evolutionary model, which also
considers a constant population size, but consisting of non-
overlapping generations. Thus, the populations at different
time steps correspond to successive generations, so that there
is no overlap between parent-sequences and offspring-
sequences. In general, both models behave in similar fashion
(Wakeley, 2006), however, our model computationally
requires fewer time steps to obtain similar results in
comparison with the Solé model. Briefly, the rules used in
this contribution are summarized as follows. For the initial
population, i = 1, a number of S = 100 bit-strings is generated
consisting of random 1's and 0s. The next population at time i
+ 1 is initially empty, and is iteratively filled with selected
sequences from the previous population at time i. Selection is
based on fitness, and can be simulated in a variety of ways.
The simplest approach is to use a “needle in a haystack”
fitness landscape, with an equal fitness for all sequences,
except for a “master sequence,” which is the most fit. The
master sequence is arbitrarily taken as the binary sequence
consisting of only digits 1, see Fig. 2.

A candidate sequence is chosen at random from the
population i, and is selected for copying to the population i +
1 with a probability of P = 100% if it is the master sequence,
and with a probability of P = 5% if it is not the master

Figure 1 Discrete algorithm for the time evolution of a
quasispecies with S individuals, based on the Wright-Fisher
evolutionary model, and each individual is a bitstring of ν bits that
can take the value 0 or 1. At each time step i ! iþ 1, all
individuals of the population are updated and where different
generations do not overlap. The population at time i+ 1 is initially
empty and is iteratively filled with individuals from the population
at i until it contains S individuals. At each iteration of the filling
process, an individual is selected at random from the population at
time i and is copied to the the population at time i + 1 with a
probability P = 100% if it is the master sequence and with P = 5%
if it is any other sequence. The copy process involves a mutation
rate μ per bit where 0 can mutate into 1, or vice versa.

Figure 2 Fitness landscape. A population consists of S = 100
binary sequences of length ν = 15, composed of digits that can be 0
or 1. The master sequence is arbitrarily chosen as being composed
of only digits 1. The dynamics of the population is dominated by
the two opposing forces of mutation and fitness-driven selection.
The effect of fitness is deterministic and retains the master
sequence for reproduction with a probability of P = 100%, while
having a probability of P = 5% for all other sequences. The action
of mutation is random and equal for all sequences, and represents
the error rate in the reproduction process, which is μ per bit and
per sequence.
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sequence. The copy process involves a per-digit mutation rate
μ, which is the probability for each digit to switch from 0 to 1,
or from 1 to 0. These steps are repeated until the population at
time i + 1 contains S = 100 bit strings. The time evolution of
the population is followed over a total of N = 104 iterations.
The count of the number of master sequences in the
population as a function of time, n(i), serves as a time series,
and is found to be wildly fluctuating, because the number of
master sequences from one population to the next can change
drastically. For each mutation rate μ, the algorithm is repeated
100 times, and the percentage of trials Pm is computed where
at least one master series has survived in the population at the
end of the time evolution. Although intuition would expect a
smooth, continuous decay of this probability with mutation
rate μ, there is actually a sharp decay close to a given critical
rate, μcrit, very much like a phase transition, where μ serves as
a control parameter and Pm acts as the order parameter, see
Fig. 3. This phenomenon is known as the error catastrophe
(Bull et al., 2005). It describes the breakdown of heredit-
ability and the transition from a quasispecies, that is, a
heterogeneous set of mutant sequences, centered around the
master sequence in sequence space at low mutation rates,
toward a random set of strings, at high mutation rates, see
Fig. 4.

Time-series analysis and early-warning signals

Complex dynamical systems, ranging from ecosystems to
financial markets and the climate, can have critical thresh-
olds–so-called tipping points–at which a sudden shift to a
contrasting dynamical regime may occur. Predicting such
critical points before they are reached, proves to be extremely
difficult because models of complex systems are usually not
accurate enough to reliably indicate where critical thresholds

Figure 3 Phase diagram. In function of the mutation rate μ
(control parameter), over a total of 100 trials, the percentage of
trials Pm (order parameter) is shown where the population at the
end of the time evolution has at least one master sequence. The
phase diagram shows the end situation when an explicit master
sequence is present in the initial population (full line), and without
an explicit master sequence in the initial population (dashed line),
in which case a nonzero mutation rate is needed to obtain a master
sequence in the final population. Three dynamical regions can be
observed. For small mutation rates, 0£�£0:120, genetic
information is transferred between generations. In the quasispecies
regime, for intermediate values, 0:120£�£0:150, the behavior is
critical and the transfer of genetic information is lost rapidly with
increasing μ. For large values 0.150< μ, there is no heritability.
The phase diagram is obtained with the discrete quasispecies
algorithm of this article after N = 104 iterations, whereas with the
algorithm of Solé et al. at least N = 105 iterations are needed for the
phase diagram to converge to the same shape.

Figure 4 Composition of the population. (A) Population
distribution Pμ(k) of binary sequences of length ν = 15 containing
specific numbers k of digit 1’s at the end of the time evolution. At
low mutation rates 0£�£0:120 (gray lines), the population is
composed primarly of master and near-master series. In the
quasispecies regime, for critical mutation rates, 0:120 < �£0:150
(dashed lines), the population is bimodal. At high mutation rates
0.150 < μ (black lines), the population is composed of sequences
formed of nearly similar proportions of 1’s and 0s, i.e. k � � – k.
(B) The number of posible combinations C(ν,k) maximizes for k =
7,8 digit 1’s (inset). For low mutation rates (gray curves), the
renormalized population distribution Pμ(k)/C(ν,k) is homogeneous
and peaks at k = 15, indicating the dominance of the deterministic
selection force. For high mutation rates (black curves), the
renormalized population distribution is flat and heterogeneous,
indicating the dominance of the random genetic drift. For critical
mutation rates (dashed curves), the population does not follow the
heterogeneous distribution C(ν,k), and renormalizing the popula-
tion distribution Pμ(k) inflates the contribution of the extreme k
values.
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may occur. A more realistic approach may be “listening” to
the system and to study its time series in a statistical way. It
appears that certain generic symptoms may occur in time
series of a wide class of systems as they approach a critical
point, regardless of the differences in the details of each
system. Early-warning signals can be defined in terms of
statistical properties of the fluctuations of these time series.
These properties can be static, i.e. related to the frequency and
size distribution of the fluctuations, or dynamic, i.e. how the
fluctuations follow each other up and how they are correlated
in time, see e.g (Scheffer et al., 2001, 2009, 2012; Drake and
Griffen, 2010) for an overview. Most studies have concen-
trated on theoretical models, but the theoretical early-warning
signals have been confirmed also in whole-ecosystem
experiments (Carpenter et al., 2011), although their applica-
tion in real systems might not always be obvious (Boettiger
and Hastings, 2013). In this work, we will study the time
series of the evolution of the master population n(i), and,
more specically, whether its statistical properties differ for
subcritical, critical and supercritical values of the mutation
rate μcrit. We are interested in the following early-warning
signals:

Flickering and bimodality
Flickering is a phenomenon that can be seen when a critical
point is approached, where different competing states coexist.
If fluctuations are strong enough, then the system moves back
and forth between the basins of attraction of the two
alternative attractors (Berglund and Gentz, 2002). Such
behavior is considered to be an early-warning signal, because
the system may shift permanently to the alternative state if the
underlying slow change in conditions persists, moving it
eventually to a situation with only one stable state.
Statistically, flickering can be observed in the frequency
distribution of states as bimodality (reflecting the two
alternative regimes), see e.g. the bimodal population
distribution Pμ(k) for μcrit in Fig. 4. Flickering also leads to
increased variance and skewness in the frequency distribu-
tion.

Standard deviation and coefficient of variation
When a dynamical system is driven closer to its critical point,
there is an increasing delay in recuperation rate of the system
toward its steady-state, a phenomenon which is called critical
slowing down. As a consequence, local fluctuations decay
more slowly, can accumulate and grow larger in size. Thus the
standard deviation of the state variable increases when the
tipping point is approached (Carpenter and Brock, 2006), and
we expect a similar behavior for the standard deviation of
time series n(i) of the discrete quasispecies model near the
error threshold. The standard deviation is defined as,
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where Δn ¼ nðiÞ – n is a measure of the size of a fluctuation
around the mean count n. In the following, we will find that n
varies in an important way with the mutation rate μ. However,
the standard deviation σ should always be understood in the
context of the mean of the data, especially when data sets with
different units or widely different means are compared. One
solution is to consider the coefficient of variation (CV)
(Bedeian and Mossholder, 2000),
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of which the value is independent of the unit in which the
measurement has been taken, so it is a dimensionless number.
A disadvantage of CV is that when the mean value is close to
zero, CV approaches infinity and is hence sensitive to small
changes in the mean. We will indeed find that in our model the
mean number of master-sequence counts n approaches zero
for large (supercritical) mutation rates μ. We will use as an
alternative to CV a rescaling of all time series considered, so
that they all fluctuate in the same dynamic range, between a
predetermined minimum nmin and maximum nmax, and then
we will compare the standard deviation σ of these rescaled
time series. The standard deviation now quantifies the
variability of the time series, independently from the mean
value around which the time series fluctuates, which we will
find to serve as a better early-warning signal of the critical
error threshold.

Skewness and kurtosis
The asymmetry of the fluctuations is expected to increase near
the tipping point, and hence the frequency distribution of the
corresponding time series will be skewed. This asymmetry
effect can be quantified by the skewness (Guttal and
Jayaprakash, 2008), which is the third standardized moment
of the frequency distribution,

SkewðnÞ ¼

X

N

i¼1

nðiÞ – nð Þ3

N�3 : (3)

In this work, we will find that also the kurtosis serves as an
early-warning signal. The kurtosis or peakedness is the fourth
standardized moment of the frequency distribution,

KurtðnÞ ¼

X

N

i¼1

nðiÞ – nð Þ

N�4 : (4)

In this definition, the kurtosis and the skewness of the
Gaussian distribution are Skew = 0 and Kurt = 3. A high
kurtosis distribution has a sharper peak and longer, fatter tails,
such that more of the variance is the result of infrequent
extreme deviations; the opposite is true for a low kurtosis
distribution, that has a more rounded peak and shorter, thinner
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tails, and where most of the variance comes from frequent
modestly sized deviations (DeCarlo, 1997). A zero skewness
value indicates that the values are evenly distributed on both
sides of the mean, typically but not necessarily implying a
symmetric distribution. The skewness value can also be
positive or negative, or even undefined. Qualitatively, a
negative skewness indicates that the tail on the left side of the
probability density function is longer than the right side and
the bulk of the values (possibly including the median) lie to
the right of the mean. A positive skew indicates that the bulk
of the values lie to the left of the mean (Doane and Seward,
2011).

Correlation strength
Because slowing down causes the intrinsic rates of change in
the system to decrease, the state of the system at any given
moment becomes more and more like its past state, with a
consequent increase of the autocorrelation in the fluctuation
pattern. The increase can be in the strength of the correlations
and/or in their range, and both can be measured in the time
domain by means of the autocorrelation function (Williams,
1997),

CðτÞ ¼

1

N

X

N

i¼1

nðiÞ – nð Þ nðiþ τÞ – nð Þ

1

N

X

N
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nðiÞ – nð Þ2
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where nðiÞ – n measures the size of the fluctuation of the time
series around its mean n at time i, nðiþ τÞ – n corresponds

with the size of the fluctuation after a time lag τ, and �2 ¼
ð1=NÞ

X

nðiÞ – nÞ2�

is the variance of the time series. The

autocorrelation function C(τ) is normalized in such a way that
C(0) = 1 and Cð1Þ ! 1. The literature on early-warning
signals focuses on the correlation strength. This strength can
be quantified with the lag-1 autocorrelation coefficient C(1),
which measures how strongly nearest neighbors are corre-
lated on the average (i.e. neighbors that are a time lag τ = 1
apart). The correlation strength is found to rise drastically
when the system approaches its critical point (Scheffer et al.,
2009; Livina and Lenton, 2007; Biggs et al., 2009). The
amount of autocorrelation strength in a time series can be
estimated as well in the frequency domain by means of the
power spectrum, which is the square of the Fourier transform
of the time series (or the inverse Fourier transform of the
autocorrelation function, according to the Wiener-Khinchin
theorem). The power spectrum shows the frequencies that
contribute to the time series, together with their relative
importance. In the framework of early-warning signals, a
“reddening” of the power spectrum is observed near the
critical point, i.e. an increase in the contribution of low
frequencies (Kleinen et al., 2003; Livina and Lenton, 2007;
Biggs et al., 2009; Carpenter and Brock, 2010). Near the
critical point, long-range correlations are supposed to emerge,

giving rise to a fractal time series with a power spectrum that
behaves as a power law (Bak et al., 1987; Fossion et al., 2010;
Landa et al., 2011),

Pðf Þ / f β, (6)

where β = 0 for a random time series (white noise), β< 0 for a
correlated time series (reddened spectrum) (Halley, 1996;
Halley and Inchausti, 2004), and β> 0 for an anti-correlated
time series (bluish spectrum) (Peng et al., 1993). The
spectrum is in general broadband, displaying its power-law
behavior over several frequency scales. The spectral density
exponent,

β ¼ Δlog P

Δlog f
, (7)

can be seen as a measure of the correlation strength present in
the time series, as a larger jβj implies that more power Δlog P
is concentrated in a smaller frequency range Δlog f (Fossion
et al., 2010). The autocorrelation function C(τ) and the power
spectrum P(f) are strictly only defined for stationary time
series (β³ – 1) and theoretically can only be used to study
linear correlations. However, C(τ) and P(f) are found to
approximate well the behavior of the ensemble mean, if
different trials of the same phenomenon are taken into
account (Flandrin, 1989). On the other hand, in contrast to the
autocorrelation function, the mutual information function is
applicable also to nonlinear and non-stationary time series
(Addison, 1997). We carried out calculations using the mutual
information function and obtained the same results, thus
confirming the conclusions obtained with the autocorrelation
function and the power spectral analysis.

Correlation range (memory)
Correlation strength as a parameter for criticality has a
drawback. This parameter works well if a dynamical system
is undergoing a transition in between two different non-
correlated regimes: then correlations show up only at the
critical point, and the correlation strength rises abruptly at this
point and drops immediately after. If, instead, a dynamical
system undergoes a transition from a non-correlated regime to
a strongly correlated one, then the correlation strength would
be rising monotonously for the whole transition without any
distinctive behavior for the critical point. On the other hand,
only at the critical point, long-range correlations are expected
to emerge, and correlation range or memory could thus offer a
good fingerprint for criticality. It can be shown analytically
(Keshner, 1982) and numerically (Fossion et al., 2010) that
random time series (β ¼ 0) have zero memory, strongly
correlated time series such as brownian noise (β ¼ – 2) have
little memory, whereas the memory effect maximizes for
moderately correlated times series such as 1/f noise (β ¼ – 1).
This memory or correlation range can be quantified with the
autocorrelation function C(τ) of Eq. (5) by the time interval τ0
for which the autocorrelations decay to zero, i.e. C(τ0) = 0.
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Remark that some authors choose as memory the time
intervals τ1/e or τ1-1/e for which the the autocorrelation
function decays below the thresholds 1/e or 1-1/e (Rosenstein
et al., 1993; Hausdorff et al., 1999). In this article, we will find
that another way to quantify the memory effect of a time
series is the lag-< t> autocorrelation coefficient, i.e. the
average correlation strength of neighbors that are a time lag τ
=< t> apart, where< t> is the mean duration of fluctuations
in the time series. The average fluctuation duration can be
estimated in the following way,

th i ¼ N

fh i, (8)

where< f> is the average fluctuation rate over the whole
broadband frequency range of the Fourier power spectrum,
from fmin to fmax (Rosenstein et al., 1993; Fossion et al., 2010),

fh i ¼

X

fmax

f¼fmin

f ⋅Pðf Þ

X

fmax

f¼fmin

Pðf Þ
: (9)

In the following, we will find that the memory measures τ0
and C(< t> ) have a very similar behavior.

Results

Time series: time and frequency analysis

In what follows, we will apply the method of early-warning
signals to the time series n(i) generated with the discrete
quasispecies model described above for different values of the
mutation rate parameter μ. As mentioned in the introduction,
in the present case of quasispecies time-series, the early-
warning signals identified appear to indicate the optimization
of the systems’s survival possibilities. In Fig. 5, we present,
for each of the three regions of the phase diagram, for
μ< 0.12 (subcritical regime), for 0:12£�£0:15 (critical
regime) and for 0.15< μ (supercritical regime), a representa-
tive time series n(i), and the corresponding power spectrum
P(f), autocorrelation function C(τ), and histogram P(n).
For small (subcritical) values of the mutation-rate para-

meter (shown is the case for μ = 0.05, left panels of Fig. 5), the
time series n(i) is continuous and corresponds to random
fluctuations, also called white noise, which is confirmed by
the the power spectrum (β � 0). Shown are the power
spectrum for a single trial of the time series, and the mean
power spectrum averaged over the 100 trials of the ensemble
for μ = 0.05. The mean power spectrum shows the average
behavior of the ensemble more clearly. The correlation
functions for all realizations of the time series decay very
steeply and approximately correspond to a Dirac delta
function, C(τ)� δ(τ-0). The correlation range or memory of

the time series is very small, τ0 � 100:5 � 3 iterations. The
histogram P(n) of the time series corresponds to a symmetric
and Gaussian distribution. All the statistical measures agree
that in this subcritical regime, the time series n(i) corresponds
to random Gaussian fluctuations around a mean n.

For intermediate (critical) values of the mutation rate
(shown is the case for μ = 0.13, middle panels of Fig. 5), the
time series is intermittent, and bunches with nonzero master-
sequence counts (nðiÞ≠0) alternate with time intervals with
zero master-sequence counts (n(i) = 0). The intermittent time
series describes the situation where a lineage of master
sequences survives for several hundreds or thousands of
generations in the population, and then dies out, to resurrect
many iterations later. This intermittency can be a manifesta-
tion of the flickering behavior that is proposed as one of the
early-warning signals. Intermittent systems are known some-
times to lead to 1/f behavior (Manneville, 1980; Procaccia
and Schuster, 1983; Schuster and Just, 2005). In the present
case, the power spectrum consists of two flat regions and two
inclined regions, but overall approximates a 1/f behavior
(Azhar and Gopala, 1992; Hausdorff and Peng, 1996). The
autocorrelation function maximizes its memory in this critical
regime, 102:5£τ0£103:0 (300 to 1000 iterations). The
histogram of the time series is bimodal, corresponding to a
normal distribution and a superposed delta function. As in the
subcritical regime, the normal distribution corresponds to the
fluctuating behavior of the agglomerations or bunches. We
will find the delta-function distribution to be characteristic of
the supercritical regime; here the delta function corresponds
to the contribution of the zero counts (n = 0) in the time series.
Bimodal distributions have been suggested as early-warning
signals, and a similar histogram to the present one has been
described in the article of Carpenter and Brock (2006).

For high (supercritical) values of the mutation rate (shown
is the case for μ = 0.16, right panels of Fig. 5), the time series
is a peak train, with rather strong correlations at high
frequencies or short time intervals (β � – 1:5), and no
correlations at low frequencies or large time intervals
(β � 0), as can be seen in the power spectrum. The
autocorrelation function decays rather quickly, with a
memory effect of 101:5£τ0£102:0 (30 to 100 iterations),
which is an order of magnitude less than in the critical regime,
but an order of magnitude more than in the subcritical regime.
The histogram of the time series is dominated by a peak at n =
0, whereas higher counts n³1 are almost insignificant.

Correlations: strength vs. range

One of the proposed early-warning signals is the increased
autocorrelation near the critical point, and literature focuses
primarly on the increased autocorrelation strength. In Fig. 5, a
reddening of the power spectra can be appreciated with
increasing μ, with β � 0 for subcritical mutations rates, β �
– 1 for critical mutation rates, and β � – 1:5 for supercritical
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mutation rates and high frequencies. Here, correlation
strength as quantified by the reddening of the power spectrum
(more negative β) thus fails to indicate the critical region. This
is confirmed by the behavior of the other measure of the
autocorrelation strength, the lag-1 autocorrelation coefficient
C(1), see Fig. 6(A), where the evolution of its minimum,
mean and maximum is given over an ensemble of 100 trials,
as a function of the mutation rate μ. It can be seen that C(1) is
very small in the subcritical region, and that it rises slowly
with μ. In the critical region, the correlation strength rises
rapidly, and reaches a maximum Cð1Þ � 0:9 near μ = 0.13. In
the supercritical region, the correlation strength drops slowly
with μ, but remains rather large for the supercritical mutation
rates considered. For zero mutation rate, μ = 0, the correlation
strength is rather high,Cð1Þ � 0:6, because without muta-
tions, the model looses a significant part of its randomness.

In the case of a transition between two random regimes,
correlation strength might serve as a good fingerprint of
criticality, but this is not the case here, and we will try
correlation range (memory) instead. In Fig. 6(B), we show the
lag-< t> autocorrelation coefficient C(< t> ) in function of
the mutation rate μ. It can be seen that the behavior is much
more abrupt, with a steep rise when entering the critical
región 0:12£�£0:15 and a steep downfall on leaving. Also,
C(< t> ) corrects the anomalous behavior of C(1) at μ = 0.
An argument for the statement that C(< t> ) quantifies
correlation range rather than strength can be found in
comparison with Fig. 6(C), where the memory parameter τ0
is shown as a function of mutation rate μ. The behavior of the

Figure 5 Time series with corresponding power spectra,
autocorrelation functions and histograms for the three different
regions of the phase diagram. (A) For μ = 0.05 (subcritical), the
time series n(i) of the number of master sequences in the
population at iteration i is a continuously fluctuating series; the
power spectrum P(f) is flat (white noise, β = 0); the autocorrela-
tion function C(τ) is almost a delta function δ(τ-0); the distribution
P(n) is Gaussian. (B) For μ = 0.13 (critical), the time series is
intermittent (flickering); the power spectrum approximates a 1/f
spectrum (β � – 1); the autocorrelation function becomes very
long-ranged; and the distribution is bimodal: a Gaussian super-
posed with a dominant peak for n = 0. (C) For μ = 0.16
(supercritical), the time series is a spike train; the power spectrum
consists of two parts, without correlations (β = 0) at low
frequencies but with rather strong correlations (β � – 1:5) at high
frequencies; the autocorrelation function is relatively short-
ranged; and the histogram is dominated by a peak for n = 0,
whereas contributions from n³1 are insignificant. The power
spectra are shown for an individual time series (gray) and
averaged over 100 realizations of the time series (black). The
autocorrelation functions are shown for 100 realizations (gray)
and for the ensemble average (black). The arrows in the power
spectra indicate the mean frequency < f > of Eq. (9). Note that in
the time series, the mean number of master sequences in the
population n drops with increasing mutation rate μ (indicated by
the horizontal line in the time series plots).
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parameters C(< t> ) and τ0 is very similar, in the sense that
they behave very abruptly when entering and leaving the
critical region.

Moments of the time series

In Fig. 7(A), we present the standard deviation σ as a function
of the mutation rate μ, averaged over 100 trials of the time
series. In the subcritical region, σ rises with μ until it reaches a
maximum for � � 0:04, after which σ drops again. In the
critical region, σ peaks abruptly for μ = 0.13. In the
supercritical region, σ falls off quickly to zero. In the present
case, the standard deviation used as an early-warning signal
could lead to misleading conclusions, as the local maximum
of σ near μ = 0.04 could be interpreted as a sign of criticality.
However, the standard deviation from time series n(i) at
different mutation rates μ cannot be compared directly,
because the mean n, around which the time series fluctuates,
varies with the mutation rate μ, as can be appreciated in the
time series of Fig. 5. In the inset of Fig. 7(A), the time series
n(i) were first rescaled, so that they all fluctuate in the same
dynamic range between nmin = 0 and nmax = 100, and then the
standard deviation was calculated, so that σ is independent of
the mean of the time series. Now, in the subcritical region, σ
rises slowly with μ, rises very steeply in the critical region,
maximizing at μ = 0.13, to drop again abruptly for larger μ.
Finally, in the supercritical region, σ approaches 0. We find
that the rescaled standard deviation indeed seems to function
as an early-warning signal, and that its sudden rise in the
critical region is due to the impending phase transition.

Figures 7(B) and 7(C) show, as a function of the mutation
rate μ, the evolution of skewness Skew and kurtosis Kurt,
averaged over 100 trials of the time series. It can be seen that
for unrealistically small or large values of the mutation rate,
Skew and Kurt have extreme values. This is understandable,
because of the frequency distributions behaving as delta
functions P(n) = δ(n–100) and P(n) = δ(n–0), for μ = 0 and μ =
0.20, respectively. For more moderate and realistic mutation
rates, 0< μ< 0.20, the probability distribution relaxes
smoothly to a symmetric Gaussian distribution with sym-
metric fluctuations around the mean, so that also the kurtosis
and the skewness behave smoothly and monotonously and
Kurt ! 3 and Skew ! 0. However, in the critical region, and
specifically for μ = 0.130, Skew and Kurt behave irregularly (a
sudden change of the monotonous behavior and/or change of
sign), exactly as would be expected for an early-warning
signal, see the insets of Figs. 7(B) and 7(C), which show the
irregular behavior in more detail.

Discussion

To study natural phenomena, one approach is to use
mechanistic models where the main problem is to define the
internal interactions of the system and then to fine-tune the
parameters in such a way that the dynamics of the system is
reproduced as well as possible. In complex systems,
composed of many interacting components, this might be a
hazardous task. A more “humble” approach might be to

Figure 6 Autocorrelation: strength vs. range. (A) Correlation
strength as quantified by the lag-1 autocorrelacion coefficient
C(1), as a function of the mutation rate μ. (B) Correlation range
measured by the lag- < t> autocorrelation coefficient C(< t> ).
(C) Correlation range measured by the time interval τ0 for which
the autocorrelation function C(τ) of Eq. (5) decays to zero, i.e.
C(τ0) = 0. Shown are the minimum (bottom dashed line), mean
(full line) and maximum (upper dashed line) over an ensemble of
100 realizations of the time series. C(< t> ) and τ0 have a much
more abrupt behavior than C(1) and serve as a better fingerprint of
the critical region 0:12£�£0:15.
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“listen” to the system, i.e. to carry out a thorough statistical
study of the associated time series, which in principle
contains information about the underlying dynamics. This is
the philosophy followed in the framework of early-warning
signals where the focus is on complex systems, ranging from
ecosystems to financial markets and climate, that can be in
multiple steady-states. When an external control parameter is
varied, the system moves from an original state to an
alternative state. It is possible that the behavior of the system
is nonlinear as a function of the control parameter, in which
case the transition can be sudden and drastic, even if the
variation of the control parameter is smooth. In this case, one
speaks about the “collapse” of the system. Time series,
associated to the system, exhibit characteristic and universal
fingerprints in their statistics when the system is near the
transitional point, and hence can be used to predict the
impending change or collapse. Early-warning signals are
usually interpreted as negative signals, that predict that the
system is at the brink of unsustainability (such as catastrophic
shifts in wildlife populations, a systemic market crash, an
abrupt shift in ocean circulation, etc.) and that measures need
to be taken urgently to revert the system back to its original
stable state.

Self-organizing systems are a particular type of complex
systems that are supposed to converge spontaneously toward
a critical state in between alternative phases, and where also
long-range correlations emerge. Flocks of starling birds can
serve as an example, since the birds can tune their individual
behavior in between two extremes: imitating their neighbors
perfectly, or following their own free will. In the first case, the
flock would behave as a rigid flying object, whereas in the
second case the flock would resemble a random, ideal gas of
bird-particles. Only in between these extremes the flock
behaves as a complex organism. We have illustrated these
concepts by studying time series in the context of a discrete
quasispecies model, where there is competition between the
random force of mutation and the deterministic force of
selection. When the selection force is dominant (i.e. small
mutation rates), the population is a heterogeneous collection
of genotypes centered around the most fit genotype, which is
called the “master sequence.” Genetic information is passed
on between subsequent generations, but the population
composition is rather static and not very adaptable to the
changing circumstances. When the mutation force is
dominant (i.e. high mutation rates), the population is a
random mixture of genotypes and its composition is
constantly changing, but transfer of genetic information
between the generations ceases to exist. There is a critical
range of moderate mutation rates where robustness and
evolvability are simultaneously optimized, and which
corresponds to the quasispecies regime. It has been suggested
that RNA viruses self-organize their mutation rate into this
regime, where they change quickly enough to escape
recognition by the immune system without however losing
hereditability. One of the main results of this work is that we

Figure 7 First moments of the time series. Shown is the average
behavior over an ensemble of 100 realizations of the time series
for each μ. (A) The standard deviation σ peaks for critical values of
mutation rate μ, a behavior which is much more prominent when
the time series are first rescaled so that all time series fluctuate in
the same dynamic range between nmin = 0 and nmax = 100 (inset).
(B) The skewness Skew takes extreme values for μ< < and
μ> > , relaxes to the typical value Skew = 0 of the Gaussian
distribution for intermediate values of μ, and shows a discontinuity
for critical values of mutation rate μ (inset). (C) The kurtosis or
peakedness Kurt takes extreme values for μ< < and μ> > ,
relaxes to the typical value Kurt = 3 of the Gaussian distribution
for intermediate values of μ, and shows a discontinuity for critical
values of mutation rate μ (inset).
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identified for time series associated to the critical quasispecies
regime the early-warning signals previously proposed in
literature. Whereas usually early-warning signals are inter-
preted in a “negative” way, i.e. a collapse or unsustainability
of the system, in the present context of a self-organized
complex system the early-warning signals serve as “positive”
signals, i.e. they are the fingerprint of a complex system that
has optimized its functionality within its own boundaries.

One of the early-warning signals proposed in the literature
is the increase in autocorrelation, where the focus is on an
increase of the autocorrelation strength. In this contribution,
we have found that it might be more useful to focus on an
increase in the correlation range, and we used two different
quantifications for the correlation range. More in particular,
the correlation range maximizes for critical values of the
control parameter and drops abruptly for parameter values
outside of the critical region. The standard deviation σ is
another important early-warning signal. However, one cannot
compare the standard deviation of different time series if their
mean values differ in a significant way, which is exactly the
case in this work for the time series n(i) as a function of the
mutation rate μ. This problem can be solved if the time series
are first rescaled, so that all time series fluctuate in the same
dynamical range, before the standard deviation is calculated.
Alternatively, one can use the coefficient of variation, which
is the standard deviation divided by the mean, if at least the
mean is much larger than zero. In literature, asymmetry of the
frequency distribution and skewness has been suggested as an
early-warning signal. Here we find that also the kurtosis or
peakedness can contribute as an early-warning signal.
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