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Brain aging and neurodegenerative diseases share the hallmarks of slow and progressive 
loss of neuronal cells. Flavonoids, a subgroup of polyphenols, are broadly present in food 
and beverage and numerous studies have suggested that it could be useful for preventing 
or treating neurodegenerative diseases in humans. Dihydromyricetin (DHM) is one of the 
main flavonoids of some Asian medicinal plants that are used to treat diverse illness. The 
effects of DHM have been studied in different in vitro systems of oxidative damage and 
neuroinflammation, as well as in animal models of several neurodegenerative diseases, 
such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Here we 
analyzed the most important effects of DHM, including its antioxidant, anti-inflammatory, 
and neuroprotective effects, as well as its ability to restore GABA neurotransmission and 
improve motor and cognitive behavior. We propose new areas of research that might 
contribute to a better understanding of the mechanism of action of this flavonoid, which 
could help develop a new therapy for aging and age-related brain diseases.

Keywords: dihydromyricetin, ampelopsin, aging, neurodegenerative diseases, Alzheimer’s disease, Parkinson’s 
disease, Huntington’s disease

INTRODUCTION
Aging is a major risk factor for developing brain illnesses such as Alzheimer’s disease (AD) (Lindsay 
et al., 2002; Katz et al., 2012), Parkinson’s disease (PD) (Collier et al., 2011), and other age-related 
dementias (López-Valdés and Martínez-Coria, 2016), as well as cerebrovascular disorders (Choi 
et al., 1998). These diseases share pathophysiological mechanisms with aging such as oxidative stress 
and chronic inflammation.

Dihydromyricetin (DHM), also known as ampeloptin, rac-ampelopsin, and ampelopsin, 
is a flavonoid isolated mainly from Japanese raisin trees (Hovenia dulcis Thum) and Chinese 
Rattan tea [Ampelopsis grossedentata (Hand.-Mazz.) W.T.Wang]. These plants have been used 
for a long time in Asian traditional medicine to treat different health problems (Hyun et al., 
2010; Kou and Chen, 2012). DHM is one of the main flavonoids found in the Japanese raisin 
tree and Chinese Rattan tea, together with myricetin and quercetin (Zhang et al., 2007; Hyun 
et al., 2010).
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In the few past decades, scientific knowledge about the 
effects of DHM has increased considerably. This molecule has 
a wide range of positive effects, including anti-oxidative, anti-
inflammatory and neuroprotective properties, and has been 
shown to cause motor and memory improvements, all of which 
can help treat dysfunctions associated with brain aging and some 
neurodegenerative diseases such as AD and PD.

This work summarizes and analyzes the current scientific 
information on the pharmacology of DHM, with a particular 
focus on the pathological processes of age-related brain diseases 
and on animal models of these diseases. We suggest some areas 
of research in which this compound could be shown to beneficial 
effects on human aging and age-related diseases.

DHM Structure, Pharmacokinetics and 
Toxicity
Dihydromyricetin (2R,3R)-3,5,7-trihydroxy-2-(3,4,5- trihy 
droxyphenyl)-2,3-dihydrochromen-4-one is a flavanonol,  a 
subgroup of flavonoids (PubChem CID: 161557 and 
ChEBI:  28429). This subgroup is a class of secondary 
plant  metabolites that perform many physiological functions in 
plants as antioxidants, pigments, etc. (Tsao, 2010).

The pharmacokinetic parameters of DHM have so far been 
identified in rats after oral administration, the results indicating 
that DHM is poorly absorbed into the bloodstream, with a 
bioavailability of only 4.02%. Furthermore, the time required 
for it reaches peak plasma concentration is 2.67 h after oral 
administration at a dose of 20 mg/kg (Liu et al., 2017). A recent 
in vitro study using the human intestinal Caco-2 cell model, a 
common tool used to predict, in vivo, the absorption of drugs 
in humans, showed that the uptake and transport of DHM 
occurs mainly through a passive diffusion mechanism, which 
can partially explain the low bioavailability of DHM after oral 
administration (Xiang et al., 2018).

After ingestion by animals, some DHM is metabolized in 
the gastrointestinal tract and liver, and the rest is absorbed 
into the bloodstream and is widely distributed throughout the 
body, including the heart, lungs, kidney, etc., even crossing the 
blood–brain barrier and spreading through brain tissue (Fan 
et al., 2017). DHM is completely excreted in urine and feces after 
12 h. Seven to eight DHM metabolites have been identified in 
urine, feces, and blood (Fan et al., 2017), all of them produced by 
common metabolic routes such as dihydroxylation, methylation, 
glucuronidation, reduction, and isomerization (Zhang et al., 
2007; Fan et al., 2017). Whether these metabolites have any 
pharmacologic effect is still unknown.

Although there have been few DHM toxicity studies, 
some important information has already been obtained. For 
example, the lethal dose 50% for oral administration in mice 
is >5 g/kg (Zhou and Zhou, 1996). At concentrations ranging 
from 150 mg/kg (500 mmol/L) to 1.5 g/kg (5,000 mmol/L), 
DHM did not cause any acute toxicity or had significant side 
effects on mice (Zhang et al., 2014), which suggests that DHM 
has very low toxicity (OECD, 2001a; OECD, 2001b); however, 
more in vitro and in vivo tests are needed to establish reliable 
safety limits.

Since low bioavailability limits the pharmacologic value, 
several research groups have been made diverse preparations 
with better solubility or permeability, mainly tested on the 
in vitro studies. For example, microemulsion (Solanki et al., 
2012), nanoparticles (Ameen et al., 2018), soluble cocrystals 
(Wang et al., 2016), nanoencapsulation (Dalcin et al., 2019), 
and solid dispersions and inclusion complex (Ruan et al., 
2005). Additionally, Zhao et al. (2019) showed that a nanoscale 
DHM-phospholipid complex significantly increased oral 
bioavailability in rats. All these developments can improves the 
oral bioavailability and facilitate their possibly use against brain 
aging and neurodegenerative diseases.

Anti-Oxidative effects of DHM (In Vitro 
Models)
Oxidative damage to cells is a common and important part of the 
pathology of many diseases such as AD, PD, Huntington’s disease 
(HD), and aging (López-Otín et al., 2013; Singh et al., 2019). The 
molecules responsible for oxidative damage, known as reactive 
oxygen species (ROS) and reactive nitrogen species (RNS), are 
mainly produced by the mitochondrial respiratory chain. Several 
in vitro studies have shown that DHM inhibits lipid-peroxidation 
(He et al., 2003a; He et al., 2003b; Zhang et al., 2003; Yang et al., 
2009), which suggest that DHM can protect cell membrane 
lipids against the damage induced by an excess of ROS and RNS. 
Moreover, DHM may reduce oxidative damage to cells through 
different mechanisms such as direct radical-scavenging and Fe2-
chelation (Li et al., 2016), as well as by increasing the enzymatic 
activity of superoxide dismutase (SOD), which mainly catalyzes 
the dismutation of superoxide anion (O2•–) to molecular 
oxygen (Mu et al., 2016; Song et al., 2017). Moreover, DHM 
also exerts antioxidant effects by activating phosphatidylinositol 
3-kinase (PI3K/Akt) and modulating the nuclear transcription 
factor-erythroid 2-related factor 2 (Nrf2), which participates in 
the induction of genes encoding detoxifying and antioxidant 
enzymes (Luo et al., 2017; Hu et al., 2018). Another study 
suggests that DHM modulate AMP-activated protein kinase 
to cause inhibition of the oxidative stress response (Jiang et al., 
2014). Taking all the above into account, DHM seems to reduce 
the oxidative stress by modulating several molecules of this 
signaling pathway.

Anti-Inflammatory effects of DHM (In Vitro 
Models)
Although some aspects of the anti-inflammatory effect of 
DHM are still unknown, some in vitro studies have shown that 
it decreases the production of different molecules that are part 
of the pro-inflammatory cascade, such as interleukin IL-1β 
and IL-6, the tumor necrosis factor-alpha (TNF-α) and nitric 
oxide (Qi et al., 2012; Hou et al., 2015), while also increasing 
the production of anti-inflammatory IL-10. Moreover, DHM 
downregulates the expression of TNF-α by inhibiting nuclear 
factor-kappa B (NF-kB), a protein complex that controls 
cytokine production and is involved in many processes, 
including inflammation and apoptosis (Tang et al.,  2016). 
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Moreover, another research found that DHM decrease 
dysfunction (tube formation and migration) of Human 
Umbilical Vein Endothelial Cells (HUVECs) Culture, induced 
by TNF- α through repressing miR-21 expression (Yang et al., 
2018), a microRNA which increased expression was observed 
in human atherosclerosis (Raitoharju et al., 2011).

effects of DHM in Animal Models of Aging
A common model for the study of aging is the D-galactose-
induced aging rats, produced by the chronic administration of 
D-galactose (D-gal), which causes mitochondrial dysfunction 
and increases apoptosis, inflammation and oxidative stress in 
the brain. These animals show alterations such as poor immune 
response, a shortened lifespan, and learning and memory deficits 
(Shwe et al., 2018). In this animal model, DHM has been shown 
to cause a significant reduction astrogliosis, apoptosis and 
dysfunctional autophagy in neurons of the hippocampus through 
the up-regulation of sirtuin 1 (SIRT1) and p53/p21, and the 
down-regulation of the mammalian target of rapamycin (mTOR) 
in a miR-34a-dependent manner (Kou et al., 2016). These results 
suggest that DHM ameliorate cognitive impairments and aging 
by modulate excessive apoptosis and dysfunctional autophagy of 
hippocampal neurons, and astrogliosis.

effects of DHM in Animal Models of AD
A few years ago we published a study (Liang et al., 2014) 
about the chronic effects of DHM in two different transgenic 
mouse models of AD (TG2576 and TG-SwDI). We used 20 
months-old male animals divided into transgenic and control 
groups. The animals were treated with 2mg/Kg/day during 3 
months and we analyzed the effects of DHM on their behavior 
and pathology. The results showed that chronic treatment 
with DHM improves memory, decreases the accumulation of 
Aβ1–40 and Aβ1–42 (markers for AD), and restores Gamma-
Aminobutyric Acid (GABA) neurotransmission and the 
levels of gephyrin, an anchor protein for the postsynaptic 
GABAA receptor. These results suggest that chronic 
treatment with DHM improves cognitive deficits, reverses 
the progressive accumulation of Aβ peptides, and restores 
GABAergic transmission and functional synapses. Recently, 
Feng et al. (2018) used another Alzheimer’s mouse model, 
termed APP/PS1 double-transgenic, in which the mouse/
human amyloid precursor protein and the mutant human 
presenilin-1 are overexpressed. They showed that DHM 
treatment also improves memory and decreases the number 
of activated microglia and the NLRP3 inflammasome, the 
activation of which plays an important role in chronic brain 
neuroinflammation (Heneka et al., 2018). Another recent 
study (Sun et al., 2019) done in an AD rat model induced 
by intracerebroventricular injection of Aβ1–42, found that 
DHM (100 and 200 mg/kg for 21 days) improves learning and 
memory, decreased hippocampal neuronal apoptosis, IL-1β, 
IL-6, and TNF-α in serum and hippocampus and changes in 
different proteins such as decreased pro-apoptotic Bax and 
NF-κB and increased anti-apoptotic Bcl-2, pAMPK, AMPK, 

and SIRT1, suggesting that beneficial effects of DHM are 
mediated by up-regulation of AMPK/SIRT1 pathway.

effects of DHM in Animal Models of PD
A common animal model of PD is based on the administration 
of the protoxicant MPTP (1-methyl-4-phenyl-1, 2, 3, 
6-tetrahydropyridine) for several days. After MPTP crosses 
the blood-brain barrier, it is metabolized by glial cells, which 
produce and release the toxic metabolite MPP+(1-methyl-
4-phenylpyridinium ion), which is selectively transported 
into dopaminergic neurons of the substantia nigra pars 
compacta, where it reduces ATP production and increases the 
production of ROS (Blandini and Armentero, 2012). Recently, 
Ren et al. (2017) used the MPTP animal model of PD to study 
the effects of DHM and found that the administration of 
DHM for thirteen days (tree days before the start of MPTP, 
seven days during MPTP administration and three days after 
the end of MTPT) significantly decreased dopaminergic 
neuronal loss and motor impairments (evaluated using the 
climbing pole and rotarod tests) by a mechanism that involves 
the inhibition of ROS production as well as a reduction in the 
production of the toxicant MPP+ through the inhibition of 
glycogen synthase kinase-3β (GSK-3β), the activity of which 
is associated with dopaminergic neuronal death caused by 
MPTP and by the neuroinflammation process associated with 
PD (Golpich et al., 2015).

effects of DHM in Animal Models of HD
In a 3-NP rat model of HD, treatment with DHM (10mg/kg/
day for five consecutive days) reduced significantly the initial 
and total time in the balance beam task, the hang time in the 
grip-strength test, and escape latency and time in the target 
quadrant in the Morris water-maze test, all together suggest 
that DHM reduced motor, learning, and memory impairments. 
Moreover, DHM increased the striatal metabolic rate, and 
reduced oxidative stress and apoptosis. The mechanisms 
behind these effects include the down-regulation of the 
pro-apoptotic Bax protein and the up-regulation of the anti-
apoptotic Bcl-2 protein, increased SOD activity and decreased 
Malondialdehyde, a final product of polyunsaturated fatty 
acids peroxidation (Mu et al., 2016).

Last Considerations
It is worthwhile to note, that DHM it is not the only flavanonol that 
has been studied as a potential neuroprotective agent. Taxifolin, 
also known as Dihydroquercetin or Distylin (PubChem CID: 
439533), shows neuroprotective effects such as reduction of Aβ1–
40 and Aβ1–42 formation, improves cognition in a transgenic 
mouse model of cerebral amyloid angiopathy and in AD mouse 
model induced by injection of Aβ1–42 on the hippocampus 
(Davis et al., 2004; Sato et al., 2013; Saito et al., 2017; Wang et al., 
2018). Although, DHM and Taxifolin have a similar molecular 
structure and they share some activation pathways (e.g. BDNF 
and SIRT1) more research is needed to establish a structure-
activity relationship of flavanonols.
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Conclusions and Future Prospects
In this review, we showed that DHM has a wide range of 
beneficial effects, both in vitro and in vivo models of human 
diseases, including anti-oxidative, anti-inflammatory and 
neuroprotective properties (Figure 1), restoration of GABA 
neurotransmission, and improvements in motor and cognitive 
behavior, which suggests that this compound may be useful 
for treating human aging and neurodegenerative diseases. 
However, further research is required to assess the clinical 
potential of DHM. For example: several studies have indicated 
that DHM is absorbed in the gastrointestinal tract, crosses the 
blood-brain barrier and does not have toxic effects, suggesting 
that it could exert positive effects on the brain without risk of 
toxicity; however, more pharmacokinetic studies are required 
to provide more robust evidence. Although we have a good 
understanding of some of the effects of DHM on cells found 
outside of the brain, we still do not understand completely the 
basic mechanisms of neuroprotection and neuroplasticity of 
DHM in neurons and glial cells, particularly in microglia and 
astrocytes, which play a very important role in the homeostatic 
maintenance of the brain. Besides this, senescent cells are also 
always present in aging and neurodegenerative diseases, and we 
need to know whether DHM can modulate cellular senescence 
and the inducers of this process. Anti-inflammatory effects of 

DHM have been broadly studied, mainly in vitro and in vivo 
models, and a clinical trial has shown some similar results. 
A randomized, double-blind, placebo-controlled trial in 
humans showed a significant decrease in seric TNF-α after 12 
weeks of consuming 600 mg of DHM per day (Chen et al., 
2015), supporting the idea that DHM has positive effects on 
human health.
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FIGURe 1 | Pleiotropic effects of DHM. Aging, AD, HD and PD have several dysfunctional responses such as oxidative stress, chronic inflammation, apoptosis, and 
autophagy impairment. DHM counteract these alterations by modulate specific molecules (showed inside the boxes) that are part of those pathways.
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